
数据分析-回归分析
回归分析是数据分析中最常用的模型之一,其实用性和普遍性很高,如下分别从线性回归、多元回归、逻辑回归三方面,通过实例分析讲解
解决三个问题
实例1:羽美想预测明天的冰茶销量
实例2:宫野想估算在一个新的地址开店的月销售额
实例3:羽美想推测一下明天的特供蛋糕卖出去的可能性
回归分析的基础流程分六步
羽美想预测明天的冰茶销量。羽美知道冰茶在天热的时候销量好。记录的店中冰茶的销售数据在下表,先画出散点图观察相关性,下图是明显的正相关
可以通过添加趋势线,勾选显示公式和R平方值,轻松就搞定回归方程和精度估计
也可以自己用公式来计算,先求x的平均,y的平均,Sxx,Syy,Syy,通用Se的对a,b的微分=0可以推导出a,b的计算公式
用公式计算R平方看看数据和方程的拟合程度,越接近1拟合程度越高
将上面的数据作为抽样数据,可以估算出总体的分布,用F分布检测总体回归系数,计算出的统计量的概率和0.05比较
对总体回归做估值,在置信度为95%时计算置信区间,计算温度在31度时的置信区间
在置信度为95%时候计算预测区间,计算温度在31度时的预测区间,预测区间的取值范围要比估值区间更宽一些
观察个体的标准化残差,当个体的标准化残差的绝对值大于3时,应该剔除后再进行回归分析
使用Durbin-Watson统计量评估序列自相关程度,如果值在2左右,说明不存在序列自相关
可用尝试多种形式的方程做回归,通过观察散点图判断拟合程度比较好的函数,选择回归后的R平方大的函数
多元回归
宫野想估算在一个新的地址开店的月销售额。宫野知道营业面积越大,距离车站越近,店铺的销售额就越大。各家门店的销售数据如下表,首先画出散点图观察相关性,通过Correl函数计算相关系数,一个是0.89,一个是-0.77都相关显著
用Linest函数计算回归系数,注意Linest计算出的系数是反序的,带入系数就有了回归方程,接下来计算Syy、Se,因为多元回归中R的计算会受到自变量个数的影响,就用修正自由度的R2公式
对总体回归检验回归系数和偏回归系数的检测统计量
其中用到的S11的求解过程,A的转置用“粘贴”的时候勾选“转置”,矩阵相乘法用MMult函数,矩阵求逆用MInverse函数,S11就是对角线上第一行第一列的元素
计算估值区间和预测区间,多元回归采用马氏距离避免欧式距离的量岗的问题
多元回归的自变量可以很多,可以对自变量进行组合,用修正自由度的R平方评估后选择最好的组合。
多元回归将分类变量拆分为n-1个变量来处理,比如:性别有男、女和其他,拆分为性别男,性别女二个变量,用1,表示是,0表示否。
羽美想推测一下明天的特供蛋糕卖出去的可能性。羽美的经验告诉她周三六日客户比较多,好像和温度也有点关系。特供蛋糕的销售数据如下表,首先画出气泡图观察相关性,用气泡是因为点有密集的堆叠,通过Countif辅助列算出气泡的大小,就可以画出气泡吐了,然后用Correl函数计数相关系数。
用规划求解完成逻辑回归系数的计算,因为探测计算中可能会超出销售预测的值过小,从而导致对数释然计算的溢出失败,需要调整销售预测函数=1/(1+EXP(-IF(G2>-700,G2,-700)))做最小值的溢出保护,同时要约束系数变量不为零--AND(NOT($B$24=0),NOT($C$24=0),NOT($D$24=0)),注明:--是转换成整数
下面计算R平方的,这里n1,n0分别是样本中卖出去的个数和没有卖出去的个数,逻辑回归中R平方是越小越显著,可以计算误判率,卖出和预测卖出的相关系数观察模型精确程度。
总体系数的检测,用x2的2自由度检测
检测偏回归系数,用x2的1自由度检测
预测今天是否可以卖出去,带入方程=0.44<0.5估计是卖部出去了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14