
银行业大数据变现的三大关键
移动互联网出现之后,海量的用户行为数据产生了巨大的价值。从2012年至2015年,大数据一直处于1.0时代,主要应用为大数据的采集、存储、处理、挖掘、分析等,停留在数据效率问题上。2015年之后,大数据进入以获取价值为主的2.0时代,即实现大数据变现的价值时代。
银行业是个高度信息化的行业,从核心的银行系统到ATM取款机,从信用卡到网银系统,银行在每个环节都高度依赖信息系统和数据。现在,如何把数据变现是所有银行最为关心的话题之一。
银行业大数据变现的关键
大数据变现主要是通过企业内部和外部两部分数据同时作用,在内部有业务交易数据、流程型数据、交互式数据等可以形成变现资产,外部则是行业数据和互联网等数据。
首先,银行业目前已经在内部数据的分析、应用层面较为成熟。而在大数据2.0时代,银行业有望实现内外部数据的结合,获取数据变现价值。例如,在反欺诈应用方面,银行可结合自身的传统风险模型,拓展外部征信范围,借用工商数据、行业数据、网络关系模型,甚至关联运营商数据、垂直电商数据等,对个人、小微及中小企业客户进行整合信用评级,以过滤欺诈及坏帐风险。同时,大数据实时分析客户信用卡交易数据、网络位置行为和商户交易历史等可以防止客户与商户的套现欺诈,实现动态预警及追踪。
第二,银行业若想在大数据变现时代取得领先,移动大数据将是关键中的关键。除了将自身银行移动App中的交互行为进行收集和处理外,银行必须向互联网企业学习,打破自身的数据闭环,坚持信息共享,寻找有价值的外部数据,进行跨界合作。也就是说,在大数据价值变现时代,移动互联网数据将成为银行业大数据应用的基础数据。移动大数据包括用户位置信息、个人喜好、生活轨迹和社交媒体上的情绪意见表达等等,全都具有银行业传统数据不具备的特点——持续、多变与实时,其潜在价值相当可观。
第三,深入的客户洞察是掌控客户的关键,因此客户标签也将成为大数据金融的关键工具。简单来说,客户标签就是对客户行为洞察后建立的客户特征,通过整理客户现有的行为和知识,形成完善的结构化客户知识标签,从而全面立体地认知客户。标签具有相关性和大概率特点,可从基本属性特点和需求分析方面来定义,可分为用户属性、产品信息、应用交易、交互历史、消费偏好等类型,从而定义出银行业需要的客户群体信息,是用户画像、精准营销、风险监测、决策支持、战略定位等高级应用的基础,是大数据变现时代的基本元素。
例如,某大型国际银行将大数据分析技术应用于精准营销,并取得了不错的成果。每天都有成千上万的客户通过访问银行网站、移动App寻找信息或办理业务,但当一部分客户中断了申请流程或未能得到帮助时,如何提高营销成功率及提高客户体验就成为了大数据变现时代的重点。该银行通过大数据平台,收集客户的行动和搜索数据点,形成数据标签,当客户访问银行网页或走进银行的某一分支机构时,大数据平台就可以实时分析、洞察客户之前的行动标签,包括线上搜索信息、手机银行的查询动作等,为客户推荐相关产品及信息,从而实现精准营销,获取大数据变现价值。
大数据技术还在不断地完善,随着新技术的不断提出,大数据平台的可靠性、性能也将随之提升,将帮助银行业顺利迎接大数据2.0时代。而随着数据变现模式的深入探索,可期待在未来创造出更多不同的商业模式,带来更具竞争能力的领导优势!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10