京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据显示互联网行业加班最狠 怎么破?
“加班”这个词对于现代上班族来说一定不会陌生,尤其是在互联网行业奋斗的人们,而在互联网行业中的程序猿们更被誉为加班中的“战斗机”。近日,滴滴发布的《中国智能出行2015大数据报告》更是从侧面印证了这一点,数据中显示,北京是全国加班最严重的地方,白领19点前下班的人数比例不到四成。综合多个行业的“大排名”,下班时间最晚前10名分别是:可口可乐、奇虎360、宝洁、阿里巴巴、京东、森马服饰、联合利华、百度、华为、腾讯。Top10公司中,互联网公司占据半壁江山,BAT全部上榜,其次为快消行业。
数据虽只是佐证,但的确能说明一些问题。那么,为什么互联网行业加班最严重?
网友推举,做什么最容易加班?
网友在谈到这个问题时由衷感叹:“做IT的命苦啊,搞开发的、做维护的加班最多,制造业这种现象比较少。”网友同样附和,认为做IT维护类工作的人加班最多,因为机器时刻运转,他必然也要整天在维护。虽然目前的技术已经向支持运维自动化的方向发展,但毕竟不是一时能看到成果的。
目前,网友在一家互联网创业公司工作,他分享了自己真实的故事:“最初,平台上线的这段时间几乎每天都在加班。没什么特别的原因,就是因为要赶项目进度。毕竟3个月开发一套平台,还要确保按时上线,这么十几个人去弄还是有难度的。虽然我在其中只是负责内外部资源的协调,但做为一个小团队的“头羊”,临阵脱逃肯定是不可取的。一边看着兄弟们拼死拼活的开发,一边是女儿在电话里殷切的呼唤,心里五味杂陈,冰火两重天。”不过他还是表示,创业公司大多是这样,这种加班还是可以理解的:“一将功成万骨枯,IT从业人员辛勤付出的同时,也在实现着自己的价值,学以致用,我觉得是值得的。”
其实,在网友的观点中可以发现,“IT”、“创业”是加班较为集中的地方,近一年互联网创业潮几乎达到巅峰,而互联网行业更是与开发、运维等密不可分。所以,互联网成为加班比例最高的行业也就不难理解了。除此之外,互联网行业瞬息万变的特性也决定了这一点,想在这个圈子里发展,你必须对突发事件足够敏感,一个事物通过互联网爆火可能仅需要几天甚至是几个小时,你需要不断关注并且与自身结合,借势营销,而营销方案之下,更多的还是开发人员加班加点的开发维护。
加了那么多班,真的有用吗?
提到加班是否有用,网友首先跳出来喊道:“先别说有没有用,不加班绩效考核都不及格!”网友原从事对日工作,他表示:“原来我做对日的时候经常加班,但工作基本没什么技术含量,拼的就是中国廉价的劳动力。这属于整个一个行业原因,和中国人不适应日本客户的严格要求也有关系,中国程序员做事有时候确实有些粗糙。”
网友与他们的观点有出入,他说:“我不常加班,只加过一次一个月的班,原因是人太少,项目也紧。我认为,所有的加班都是不合理安排时间的结果。在别人安排任务时尽量多要时间,以防止可能有变的因素,早点做出来联调测试,发现问题也能及时修改。”
网友也认为加班与效率不高有关,他说:“我们应该多学习快捷的方法,提高工作效率,尽量减少加班。每遇到一个问题就生成一个解决方案,久而久之工作效率也能有很大提升。”
怎样提高效率,减少加班?
对于提升工作效率,网友表示,他以前在Microsoft的领导经常向他强调:“重要的不是你做得多快,而是你对自己工作能力和工作量有合理的估计!也就是,给你一个任务,你要知道如果你用正常工作时间大概会花多久,不是打保票下决心说要攻克难题要不吃不喝不眠不休!只有正确的时间估计,才能让团队的进度合理。”
以前一直做PM,T通过做大大小小的项目积攒了经验,在应对流程性或突发性事件上有足够的准备和承受能力的,他总结了自己对时间管理的心得与大家分享。
想提升工作效率也不难。关键有这样几点:
1、事务的优先级:不管多少事情,总有急、慢之分,先理清楚事情的紧急程度再去动手,磨刀不误砍柴功,别担心会延误,计划得好,事半功倍;
2、事务的本质:不要被纷乱复杂的表面需求所迷惑,要学会看穿表象去究其本质。往往听完业务部门的需求分让人头很大,感觉不知所云,那么,换个人或方式,先确认对方需求点,再根据自己的理解复述,确定后再去套入到某个领域之中;
3、象限法:其实就是一种分类方法,可以按你的理解把事情归纳到不同的象限,再跟据分布情况得出处理优先级。总之得到任务之后,就是不断地按规则拆解、细分。如果你是一个LEADER,当面对大任务量时,可以有条不紊地合理分配工作任务,也不失为一种“得民心”的好途径。
不得不说网友中确是藏龙卧虎,以上对于互联网行业加班的分析已经十分深入。不过,身处互联网行业,无论是大环境影响还是个人原因,加班已经是普遍现象,我们只能在能力范围内尽量调整,提升效率。临近春节,很多人的心可能早早就飞往假期了,不如在这一时刻回望近一年的工作学习,稍作休整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11