
手游运营,怎么做一份数据日报?
很多人反映刚刚接手数据分析工作,不知道怎么来做一份数据日报,不知道取哪些数据,关注哪些重点指标,事实上对于新手而言最好的办法就是去参考前辈和看看行业一些日报的形式,但是核心在于你的产品是页游,还是app,还是手游,还是网站,还是开放平台,还是端游,或者是一款互联网应用,产品定位和属性决定了数据分析日报的形式和内容。
今天要说的这些指标和内容,基本可以保证基本的日报数据需求,换句话这是要关注的一些方面,剩下的要根据你的产品来了,不全或者纰漏错误还请各位批评指正。
在开始之前还要明确一点,仔细想清楚你的报告服务于谁,给谁看,怎么做怎么展现,都需要你自己来衡量,下面的一切都是一个基本的思路和例子,曾经看过一个面试题,在这里与各位分享一下,看看大家的答案是什么。如果你是京东商城的DMA,现在要你给刘强东提供三个数据分析指标,你会选择哪几个?
基础运营数据部分首先要把重点摘要写出来,所谓摘要就是重点的数据指标的情况写出来,实际上大家要明白这些数据都是起到了解和预警的作用,其涉及的指标有:
1)人气数据
DAU(每日活跃帐号数:每日登录过游戏的玩家)
新增用户(每日注册的玩家)
新增有效用户(每日注册的玩家并保证登录过游戏的玩家):建立时间序列的数据源,分宣传期与非宣传期数据,可结合ACU,PCU等数据,观察游戏对用户的黏着度
PCU(峰值):建立时间序列的数据源,观察并得出属于自己游戏的波动范围
ACU(平均同时在线人数):建立时间序列的数据源,观察并得出属于自己游戏的波动范围
平均在线时长
平均游戏时长
客户端下载量
官网&论坛PV,独立IP,UV,论坛的浏览次数,发帖量
2)收益数据
每日充值金额
每日充值人数(日充值APA):建立时间序列的数据源,对比业内平均水准,测试游戏消费引导能力
每日ARPU(可以理解平均充值金额):建立时间序列的数据源,测试游戏消费点挖掘能力
每日新增充值帐号:
每日购买金额
每日购买人数(日购买APA)
每日ARPU(可以理解平均消费金额)
3)流失率信息
流失率作为单独的一块要重点的进行描述,流失率的变动意味着产品在发生变化,主要要从以下几个流失率指标进行每日预警监控:
日流失帐号:统计日内有登录但统计日后7天都未登录的账号数
日流失率:统计日内有登录但统计日后7天都未登录的账号数 / 统计日的活跃帐号数
日流失充值帐号数:统计日前30天有充值行为,但统计日内无登录,且无充值行为
重点事件及活动回顾
重点活动及事件的介绍,便于在报告的阅读者容易找到前一天数据出现问题的原因,定位问题,找到相关负责人进行解决。
服务器状态信息:是否停服,玩家出现登录困难等信息
BUG:重大BUG反馈信息(影响游戏体验)
是否有新一轮活动开启
是否有版本更新
是否存在竞品测试或者上线
活动执行情况汇总
把最近一个时期开启的相关活动进度,比如开始时间,结束时间,活动链接地址进行简要汇总,便于阅读数据的一些人员能够针对数据评估活动效果。
详细数据信息
第二部分是针对第一部分而言的,对于一些公司的高层而言,没有太多的时间,只能简单的看看第一部分的数据汇总信息情况,而第二部分,实际上是给各个部门和人员来看,从更加的细致数据对比上发现问题,比如环比,同比数据怎么样,包括绘制相关的曲线图,饼图等帮助这些人员进行理解。
基础数据分解信息
1)人气数据
CCU实时在线状态图
一般而言,CCU只会列出当日,前一日和同期的对比曲线,大家灵活机动,可以直接从公司的BI系统或者经分系统得到这条曲线。
DAU:绘制DAU曲线,并包括具体数值汇总(可以列出表格),同时要把当日数据进行环比和同比分析。
详细数据表格(蓝色为上周同期,红色为日报当日数据)
详细数据表格(蓝色为上周同期,红色为日报当日数据)
接下来一般的处理ACU,平均在线时长信息,利用表格和曲线图直观形象的表现一下。
辅助的也会出现一个表格,具体列出来这些数据和信息,供查阅
此外有必要加入PCU/ACU的变化趋势图,这个图利于观察近期活动的一些情况。
在基础数据的人气数据部分可以将剩下的数据指标按照之前的表格形式展现出来,至于曲线,要根据需要灵活添加。
新增玩家数据
官网论坛数据
官网专题页
论坛访问
客户端下载信息
2)收益数据
充值数据
这里只给出了表格,实际上我们好要给出曲线图,充值金额,充值人数,充值ARPU
消费数据
同理消费数据也要给出曲线图,通过曲线图或者柱形图形象化展现。
道具销售排行信息
流失率相关信息
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13