
网站数据分析师是怎样炼成的?
如果你想成为网站分析师!想加入网站分析这个即有前途又有“钱途”的行业,那么你至少需要具备本文所提到的9大本领。
1.玩转Excel
Excel是一个最原始而且最容易入手的分析工具之一,如果你有少量的数据进行分析和汇总的话,Excel是你的不二之选,结合丰富的函数与公式,你能轻松的得到你想要的数据,如果你懂得计算机语言,会使用VBA进行编程那就更是如虎添翼了,并且还可以轻松的制作棒图,饼图,折线图等图表。但是Excel不可能是完美的分析工具,因为他的数据容量实在是太小了,超过1万行的数据请不要使用Excel。
1.1.常用函数:
1.2.常用功能:
2.网站分析基础知识
了解一些网站分析的基础知识是必须的,你要知道什么是会话,什么是PV,什么是UU/UV等指标值的含义。如下图(摘自《网站分析基础教程第二章》)所示:
3.网站开发的知识
网站分析师通过衡量各种指标值的优劣来评价网站的状况,以及提出改善优化的对策,如果分析师自己对网站的开发和构筑知识一点都不了解,也就不能准确的通过分析指标值的高低衡量网站的运营状况。
作为一名合格的网站分析师,你需要了解一些网站建设和运营的知识,还有网站设计的知识,以及用户体验相关的知识。这样的话你才能提出更有高度和深度的分析报告。
4.网络营销的知识
网站分析师的工作范围从宏观上可以分为“站内”和“站外”两大领域。站内重点在于改善用户体验,优化转化路径,SEO,分析用户行为等站内活动;站外的工作重点则在于如何更多更准确更优质的吸引用户进入网站。
所谓站外的工作主要就是指网络营销,网络营销按照具体的实现方式可以分为:展示广告(DisplayAdvertising)、PPC推广、SEO、邮件营销、视频推广、QQ群推广、博客营销、微博营销、SNS营销等。如果想成为网站分析师你需要学习如下知识:
4.1.广告类型
搜索引擎广告(PPC)
交换链接
横幅广告
邮件营销
传统媒体广告
4.2.广告相关指标
展现数(Impressions)
点击数
点击率(Click-throughRate)
CPC(CostPerClick)
CPA(CostPerAcquisition)
转化率(ConversionRate)
ROAS(ReturnOnAdvertisingSpend)
4.3.SEO知识
主流搜索引擎的排名算法
TITLE,META,Hn,h1等优化
5.测试方法
当网站分析指标的数值变得不是非常乐观的时候,或者你想做一次大规模的推广的时候,也可能是你需要对网站进行改版的时候,作为分析师需要预知改善后的效果是否能够达到预期,这一点是光凭经验很难做到的事情,那么就需要网站分析师聪明的利用师验方法进行验证,这是最直接而且准确有效的方法。
做网站分析师需要学会使用如:A/B测试,多变量测试,用户体验测试等测试方法对改善方案进行预评估,以减少新方案的实施风险。
6.交流能力
作为一名网站分析师,你需要和很多的人协同完成工作任务,其中包括项目经理,产品经理,运营经理,实施经理以及工具提供商等。高效率,准确的交流显得尤为重要。
对于交流来说,语言的表达能力作为最基本的能力要素不可或缺,但想要能顺畅的交流仅仅依靠语言是远远不够的,还需要有一定的资料的组织能力和总结能力,以及团队合作意识。
7.演讲的能力
当以网站分析师为主导进行一次网站的改版或升级的时候,通常的做法是用数字和图表来说服决策层和保守派,但事实上并不那么简单,说服更多人除了靠准确的分析数据以外,还需要网站分析师非常具有煽动性的演讲,以及面对质疑从容不迫的回应。网站分析师需要把自己的自信通过演讲的形式传播给参加会议的所有在场的人。
8.会做PPT
演讲和演示的时候,必备的利器!当然如果你能够做出很炫的动画效果将能感染更多的。
9.计划管理能力
如果你在一家小公司担任网站分析师职务的话,计划管理可能显得不那么重要,但如果你是一家大公司的网站运营经理,或者带领一个几十人的分析师团队的话,计划的管理能力将显得尤为重要。为了更好的和项目经理以及公司管理层的交流你需要具备这项技能,甚至有必要学习一些项目管理的相关知识,比如PMP认证等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07