京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的数据分析浅析
近些年,由于以社交网站、基于位置的服务LBS 等为代表的新型信息产生方式的涌现,以及云计算、移动和物联网技术的迅猛发展,无处不在的移动、无线传感器等设备无时不刻都在产生数据,数以亿计用户的互 联网服务时时刻刻都在产生着数据交互,大数据时代已经到来。在当下,大数据炙手可热,不管是企业还是个人都在谈论或者从事大数据相关的话题与业务,我们创 造大数据同时也被大数据时代包围。虽然大数据的市场前景让人充满期待,但是在公众眼中,对于数据量早已逾越TB、增长率惊人、实时性高的大数据,如何分 析、管理、利用大数据等工作仍将面临若干的挑战。
目前,对于大数据的定义尚未达成完全的共识。维基百科对大数据的定义为:所涉及的资料量规模 巨大到无法通过目前主流软件工具,在合理时间内达到获取、管理、处理、并整理帮助企业经营决策更积极目的的资讯。互联网数据中心对大数据的定义为:为更经 济地从高频率的、大容量的、不同结构和类型的数据中获取价值而设计的新一代构架和技术。所有对大数据的定义基本上是从大数据的特征出发,通过这些特征的阐 述和归纳给出其定义。在这些定义中,可将大数据的特点总结为:规模性(volume)、多样性(variety)、高速型(velocity)和价值性 (value)。
1.大数据的可视化分析
从最初的数据集成到数据分析,直到最后的数据解释,数据易用性应当贯穿整大数据分析的流 程。大数据时代的数据量大且数据结构多样化,其复杂程度早已超过了传统意义上的关系数据库。另外,随着大数据已经渗透到人们生活的各个领域,很多行业都开 始增加对大数据的需求。但普通用户往往更关心结果的展示,数据的复杂性限制了普通用户从大数据中直接获取知识。因此,数据的可视化在进行大数据的分析工作 时应当被研究工作者加以重视并进一步提升。
(1)可视化技术。可视化技术是目前解释大量数据最有效的手段之一,通过将分析结果用形象的可视化 方式向用户展示结果,且图形化方式比传统的文字展示方式更容易理解与接收。在数据可视化中,数据结果展现从底层的平台处理的数据挖掘结果中的图片,映射关 系或表格,以简单,友好,医用的图形化,智能化的形式呈现给用户供其分析使用。目前面对大数据常见的可视化技术有标签云(tag cloud)、历史流(history flow)、空间信息流(spatial information flow)等。对级数达到PB 甚至更大的大数据,传统的图表方式已经很难实现其可视化,需引进能够快速而准确地处理海量数据的科学计算方法。科学计算可以用2D,3D 的图形实现数据的可视化,为数据分心及研究提供了更加直观的表现形式,其涉及计算机图形学,图像处理,计算机视觉及图形用户界面等多个研究领域。数据的可 视化全球最大的商业网站之一eBay 选择Tableau 公司提供的数据可视化软件,使得在给定的时间内,所有员工都能够看到图形化的搜索联系及监督客户的反馈及情感分析,为eBay 带去了商业的洞察力。
(2)Web 可视化。网络的飞速发展、网络性能的不断提升,使得基于Web 的数据可视技术成为一个热点。网络上已有很多的Web 图表工具,它们常用来展现股票、天气数据等。目前最为广泛使用的是JavaScript、Flash、Java Applet 等,这些技术都可以实现在Web 上的图形绘制。对于需要处理万级以上的大数据量的科学计算数据,可以采用EJSChart 或者JFreeChart,其绘图速度快、兼容性强且具有良好的交互性,可以作为首选的绘图工具;对于绘图工具的开发,可以选择JavaScript 和Flash,这两者绘图速度快且差异不大。现在很多浏览器支持HTML5,包括手机和平板电脑,如果要求具有更好的跨平台兼容性,JavaScript 是个不错的选择。
2.预测性分析能力
对数据挖掘可以让用户更好的理解数据,而对大数据进行预测性分析可以让用户根据可视化分析和数据挖掘的结果做出一些预测性的判断。
与传统的数据分析相比较,大数据分析的一个重要目标就是从海量,数据繁多的数据库中找出隐藏的规律,使数据库发挥最大的价值。数据的价值远不止于数据本 身,而是隐藏在数据之间的关系隐含的知识。比如,现在企业与客户之间的接触途道和界面越来越丰富,而这些途径承载了客户与企业之间、客户与产品之间、客户 与品牌之间的大量互动信息与数据。如果可将这些数据整合,企业便有更多的机会准确了解现有的用户及挖掘潜在的用户群体。
为了充分发挥和利用大数据的价值,对可视化分析及数据挖掘后的结果进行预测性分析。在大数据时代,对数据进行预测性分析,为企业带来了洞察客户的机会,更全面更深入地了解和把握客户的需求特征、兴趣爱好、消费倾向和消费心理等,帮助企业提升运营管理能力及绩效。
结论
随着数据爆炸式的增长,我们正被各种数据包围着。正确利用大数据将给人们带来极大的便利,但与此同时也给传统的数据分析带来了技术的挑战。本文对大数据 的分析关键技术进行了详细的分析,主要阐述了大数据分析时的可视化技术、挖掘技术、分析技术以数据挖掘后的预测性分析问题。总的来说,虽然我们已经进入大 数据时代,但是“大数据”技术还仍处于起步阶段,进一步地开发以完善大数据分析技术仍旧是大数据研究课题的热点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27