京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么超市在利用数据方面独树一帜
软件可以对原始数据进行分析,却不能形成洞察力,后者需要人和介入。下面分析的是如何将大数据转化为强有力的决策。
大数据时代,与客户建立融洽的关系,比以往任何时候都更容易。在营销软件、客户关系管理系统、社交媒体、智能手机和在线活动普及的驱动下,我们掌握了更多的客户反馈和用户数据,同时在捕获、分析和解析数据的技术方面取得了巨大的进步。
麻烦的是,出于某些原因,数据和技术的结合并非易事。GIInsight的《2013客户亲密指数》(2013 Customer Intimacy Index)的焦点,旨在揭示导致这一现状的原因,以及如何迎接相关挑战。该调查研究了在包括ISP到汽车制造商的16个不同行业中,企业是如何与客户进 行沟通的,其中包括对1000多名英国消费者的调查。最后的调查报告,被用于与2010年的结果进行对比,以找出在当今数字化的时间,哪些才是真正的赢家 和输家。
调查中,消费者根据这些企业与客户沟通过程中所表现的客户知识和对客户的理解,对其打分。被评价的对象包括超市、银行、移动运营商和 其他类型的企业。对客户的熟悉程度分别从"像好朋友一样了解我"到"像是一个完全的陌生人"。调查结果被用于计算各行业的整体和相对得分。
调 查揭示了一些让人吃惊,甚至震惊的事实。有些本应该拥有先进数据采集能力和通信技术的行业,在了解客户方面的得分非常差。那些致力于将传统数据库营销(强 调定期客户互动,重视客户忠诚度计划)、市场推广活动和IT技术成功结合的企业,在建立良好客户关系方面做的最为成功。
超市和银行,这些传统 上拥有较多客户接触的行业,在调查中排名第一和第二位。2010年的调查中,银行排名为第三。技术驱动的行业紧随其后,包括移动运营商、娱乐行业、手机制 造商和互联网服务供应商。这些企业在利用新型营销技术和数字化渠道,采集和使用用户数据,实现更有效的定制推广方面做的更好。那么,为什么他们无法比超市 和银行做的更好?
因为技术并不能解决一切问题。
垫底的是汽车制造商、成人饮品生产商、电脑/平板电脑制造商、慈善机构和DIY /家居用品公司。这些行业在保持客户关系方面的效率不佳很能说明问题:对于一次性购买的商品,供应商很难维护与客户的联络。以汽车制造商为例,就需要有更 具创意的方式,与客户保持持续的关系。同样,某些消费品牌与客户之间的唯一接触机会,是通过超市这样的第三方渠道,因此就很难建立强大的用户粘性。慈善机 构由于当前经济环境下的资金短缺,难于花钱去做数据库营销,反过来又限制了他们获得资助的能力。
无论哪个行业,利用数据来建立密切客户关系的 关键,都取决于市场和IT的结合。这方面存在一个危险的信念,那就是:在利用大数据所提供的信息,开展有效的市场营销时,软件可以解决所有的问题;而且利 用这些信息的任务,可以简单地交由IT部门来完成。这是完全错误的认识。
软件可以分析数据、生成报告,但却无法发现其中的趋势、模式和有意义的见解,形成成功的营销战略。只有训练有素的人可以做到这一点。任何技术的进步,总是离不开人的因素。
在今天的大数据的营销环境中,要想成功与客户建立持久和有利的关系,需要企业拥有所谓的"数据科学家",传统数据营销中,将这些人简单地称为"分析 师"。这是一种专家职能的工作,无论是内部职位,还是外包服务,结合分析、数据库、营销、解析和沟通等不同技能。数据科学家不仅要懂得所用的技术,而且要 精通统计、分析和数学。更重要的是,他们必须能够立足于公司的营销挑战和目标,向管理团队和其他人员解释如何利用数据来实现企业的营销目标。
超市和银行得分最高,这并非巧合。他们不单拥有相关的技术,还知道如何有效地利用自己所拥有的用户数据库。
在排名靠后的行业中,不少公司无法获取客户数据,或者没有很好地利用已经拥有的信息,即便相关的技术已经存在。这种情况的产生,有时反倒是因为他们过于 依赖技术。在当今数据推动、数字化连接的世界中,那些无法有效接触客户的企业要么需要找到合适的人选,要么必须对这一职能进行外包。
建立亲密客户关系的5个步骤:
1、对客户和交易进行关联。这可能意味着要实施一个用户忠诚度管理或CRM项目。这是最简单的工作之一。没有这些作基础,所有努力的效果会至少降低60%。思科可以为希望挖掘社交和移动数据的零售商提供一些指导意见。
2、通过详细的分析,确定哪些数据重要,哪些不重要。然后考虑如何改变与客户的沟通。在没有研究数据的情况下,不作任何假设。
3、建立统一的客户视图和客户数据库,无论通过外部或内部手段。这并不一定需要昂贵的软件,但要对"现成的"套装软件保持戒备:如果削足适履地采用标准的套装软件,最终可能会在满足自身需求方面大打折扣。最好作一些定制方面的投资。
4、好的分析师可以将数据转化成建设性的业务建议。这些人得之不易,甚至在当今各种大数据分析非常热门的时代。要设法找到他们。
5、多尝试,多评估。有些东西会成功,有些则不会。不要怕出错,你会尝到很多东西。只是有一点要记住,不要用真的客户去做试验!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27