京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们无须更多的数据科学家 只须降低大数据使用门槛
这个国家急缺数据科学家”,目前几乎所有关于大数据的文章都提出了这么一种观点。广受热议的McKinsey公司2011年度调查指出许多机构即缺少对大数据有深刻洞见和理解的人,也没有运用大数据来做出明智决断并执行的动力。
然而在这些讨论中有些东西似乎被忽视了,那就是如何打破瓶颈进而使得大数据能够直接为企业家们所用。我们曾经在软件工业中做到过这一点,我们能够再次做到。
为了达成这个目标,透彻理解数据科学家在大数据中所扮演的角色是很重要的。目前,大数据是一个熔炉,分发着数据结构以及类似Hadoop、NoSQL、Hive以及R这样的工具。在这个技术含量非常高的环境中,数据科学家的工作就像是系统与那些来自不同领域专家之间的门卫与调解人。
虽然有点难以概括,但基本上数据科学家发挥着三种作用:数据架构、机器学习以及数据分析。虽然这些职责很重要,但事实上不是每个公司都需要一个像Google或者Facebook有的那种高度专业的数据团队。关于创造符合目标产品以及剔除技术复杂性的解决方案可以使大数据为商家所用。
随便举个例子,想想发生在世纪之交的网络内容管理革命吧。网站成了一时的时尚,但是各领域专家们却遭遇了源源不断的麻烦,因此我们有了一个瓶颈。所有网站上新的内容都需要IT编辑去编排内容甚至硬编码。那最后又是怎么解决的呢?我们把网络内容管理系统中所需要的核心内容概括并提取出来,然后把它们做成不懂技术的人也会用的模式。
让我们以电子商务为背景,稍微深挖掘一下现今的数据科学家所扮演的角色吧。
用数据架构降低复杂性
缩小范围是降低复杂性的关键。几乎所有的电子商务业务都对获取用户行为感兴趣——预约、购买、线下交易以及社交数据,几乎以上每一项都有目录及客户档案。
对这些基本功能限制范围可以使我们创建标准数据录入的模板,使得数据获取及连通更为简单。我们也需要找到打包不同数据结构与工具(现今包括Hadoop、Hbase、Hive、Pig、Cassandra and Mahout)的有意义的方法。这些数据包必须要符合目标要求,归结起来就是80/20法则:80%的大数据使用方法(所有电商业务需要的全部),可以用20%的努力和技术实现。
巧用机器学习
在机器学习上我们当然需要数据科学家,对吗?好吧,如果你有非常个性化的需求的话,或许对吧。但大部分需要用到大数据的标准需求,比如推荐引擎及个性化系统,都可以被提取出来。举例来说,数据科学家工作的一大块内容是制作“特征”,这是在数据录入里面使得机器学习更有效率的一种东西。我们想一下,所有的数据科学家都要把数据塞进机器并启动它们,那事实就是机器需要人们帮它们指出正确看待世界的方式。
然而,在每一个领域基础上的特征创建都是可以被模板化的。例如每个商务网站都有购买流以及用户分割这些概念。如果各领域专家们可以直接把他们在各自领域的想法和理念直接编码到系统里呢,是不是就可以避开作为中间人及翻译的科学家们了呢?
借用数据分析工具
从数据中自动提取那些最有价值的信息从来都是不容易的。然而,有一些获取特定领域观点的办法可以使商家们更像一个数据科学家去行动。这似乎是最容易解决的一个问题,因为市面上已经有了各种领域的分析产品。
但这些产品目前对各领域专家们来说还是限制太多门槛太高。绝对还需要一个更加友好的界面。我们也需要将机器如何通过分析结果学习放入考虑的范畴。这是非常关键的一个反馈系统,商家们希望把修正放进这个系统中。这也是另一个可能提供模板化界面的地方。
就像我们在内容管理系统中学到的那样,这些方法不能够在任何时间解决任何问题。但将这些技术型解决方案运用在一系列更广泛的数据问题上将会减轻数据科学家们遭遇的瓶颈。当各行业专家能直接用机器学习系统工作时,我们可能就进入了一个能够相互学习的崭新的大数据时代。或许到那时候大数据能解决的问题才会多于它所引起的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12