
常见的反爬虫和应对方法
1.常见的反爬虫
这几天在爬一个网站,网站做了很多反爬虫工作,爬起来有些艰难,花了一些时间才绕过反爬虫。在这里把我写爬虫以来遇到的各种反爬虫策略和应对的方法总结一下。
从功能上来讲,爬虫一般分为数据采集,处理,储存三个部分。这里我们只讨论数据采集部分。
一般网站从三个方面反爬虫:用户请求的Headers,用户行为,网站目录和数据加载方式。前两种比较容易遇到,大多数网站都从这些角度来反爬虫。第三种一些应用ajax的网站会采用,这样增大了爬取的难度。
2.通过Headers反爬虫
从用户请求的Headers反爬虫是最常见的反爬虫策略。很多网站都会对Headers的User-Agent进行检测,还有一部分网站会对Referer进行检测(一些资源网站的防盗链就是检测Referer)。如果遇到了这类反爬虫机制,可以直接在爬虫中添加Headers,将浏览器的User-Agent复制到爬虫的Headers中;或者将Referer值修改为目标网站域名。对于检测Headers的反爬虫,在爬虫中修改或者添加Headers就能很好的绕过。
还有一部分网站是通过检测用户行为,例如同一IP短时间内多次访问同一页面,或者同一账户短时间内多次进行相同操作。
大多数网站都是前一种情况,对于这种情况,使用IP代理就可以解决。可以专门写一个爬虫,爬取网上公开的代理ip,检测后全部保存起来。这样的代理ip爬虫经常会用到,最好自己准备一个。有了大量代理ip后可以每请求几次更换一个ip,这在requests或者urllib2中很容易做到,这样就能很容易的绕过第一种反爬虫。
对于第二种情况,可以在每次请求后随机间隔几秒再进行下一次请求。有些有逻辑漏洞的网站,可以通过请求几次,退出登录,重新登录,继续请求来绕过同一账号短时间内不能多次进行相同请求的限制。
上述的几种情况大多都是出现在静态页面,还有一部分网站,我们需要爬取的数据是通过请求得到,或者通过JavaScript生成的。首先用Firebug或者HttpFox对网络请求进行分析。如果能够找到ajax请求,也能分析出具体的参数和响应的具体含义,我们就能采用上面的方法,直接利用requests或者urllib2模拟ajax请求,对响应的json进行分析得到需要的数据。
能够直接模拟ajax请求获取数据固然是极好的,但是有些网站把ajax请求的所有参数全部加密了。我们根本没办法构造自己所需要的数据的请求。我这几天爬的那个网站就是这样,除了加密ajax参数,它还把一些基本的功能都封装了,全部都是在调用自己的接口,而接口参数都是加密的。遇到这样的网站,我们就不能用上面的方法了,我用的是selenium+phantomJS框架,调用浏览器内核,并利用phantomJS执行js来模拟人为操作以及触发页面中的js脚本。从填写表单到点击按钮再到滚动页面,全部都可以模拟,不考虑具体的请求和响应过程,只是完完整整的把人浏览页面获取数据的过程模拟一遍。
用这套框架几乎能绕过大多数的反爬虫,因为它不是在伪装成浏览器来获取数据(上述的通过添加 Headers一定程度上就是为了伪装成浏览器),它本身就是浏览器,phantomJS就是一个没有界面的浏览器,只是操控这个浏览器的不是人。利用 selenium+phantomJS能干很多事情,例如识别点触式(12306)或者滑动式的验证码,对页面表单进行暴力破解等等。它在自动化渗透中还 会大展身手,以后还会提到这个。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13