
scikit-learn的主要模块和基本使用
对于一些开始搞机器学习算法有害怕下手的小朋友,该如何快速入门,这让人挺挣扎的。
在从事数据科学的人中,最常用的工具就是R和Python了,每个工具都有其利弊,但是Python在各方面都相对胜出一些,这是因为scikit-learn库实现了很多机器学习算法。
我们假设输入时一个特征矩阵或者csv文件。
首先,数据应该被载入内存中。
scikit-learn的实现使用了NumPy中的arrays,所以,我们要使用NumPy来载入csv文件。
以下是从UCI机器学习数据仓库中下载的数据。
import numpy as np import urllib # url with dataset url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" # download the file raw_data = urllib.urlopen(url) # load the CSV file as a numpy matrix dataset = np.loadtxt(raw_data, delimiter=",") # separate the data from the target attributes X = dataset[:,0:7]
y = dataset[:,8]
我们要使用该数据集作为例子,将特征矩阵作为X,目标变量作为y。
大多数机器学习算法中的梯度方法对于数据的缩放和尺度都是很敏感的,在开始跑算法之前,我们应该进行归一化或者标准化的过程,这使得特征数据缩放到0-1范围中。scikit-learn提供了归一化的方法:
from sklearn import preprocessing # normalize the data attributes normalized_X = preprocessing.normalize(X) # standardize the data attributes standardized_X = preprocessing.scale(X)
在解决一个实际问题的过程中,选择合适的特征或者构建特征的能力特别重要。这成为特征选择或者特征工程。
特征选择时一个很需要创造力的过程,更多的依赖于直觉和专业知识,并且有很多现成的算法来进行特征的选择。
下面的树算法(Tree algorithms)计算特征的信息量:
from sklearn import metrics from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, y) # display the relative importance of each attribute print(model.feature_importances_)
scikit-learn实现了机器学习的大部分基础算法,让我们快速了解一下。
大多数问题都可以归结为二元分类问题。这个算法的优点是可以给出数据所在类别的概率。
from sklearn import metrics from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, penalty=l2, random_state=None, tol=0.0001)
precision recall f1-score support0.0 0.79 0.89 0.84 500 1.0 0.74 0.55 0.63 268avg / total 0.77 0.77 0.77 768
[[447 53]
[120 148]]
这也是著名的机器学习算法,该方法的任务是还原训练样本数据的分布密度,其在多类别分类中有很好的效果。
from sklearn import metrics from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
GaussianNB()
precision recall f1-score support0.0 0.80 0.86 0.83 500 1.0 0.69 0.60 0.64 268avg / total 0.76 0.77 0.76 768
[[429 71]
[108 160]]
k近邻算法常常被用作是分类算法一部分,比如可以用它来评估特征,在特征选择上我们可以用到它。
from sklearn import metrics from sklearn.neighbors import KNeighborsClassifier # fit a k-nearest neighbor model to the data model = KNeighborsClassifier()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
KNeighborsClassifier(algorithm=auto, leaf_size=30, metric=minkowski,
n_neighbors=5, p=2, weights=uniform)
precision recall f1-score support0.0 0.82 0.90 0.86 500 1.0 0.77 0.63 0.69 268avg / total 0.80 0.80 0.80 768
[[448 52]
[ 98 170]]
分类与回归树(Classification and Regression Trees ,CART)算法常用于特征含有类别信息的分类或者回归问题,这种方法非常适用于多分类情况。
from sklearn import metrics from sklearn.tree import DecisionTreeClassifier # fit a CART model to the data model = DecisionTreeClassifier()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
DecisionTreeClassifier(compute_importances=None, criterion=gini,
max_depth=None, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter=best)
precision recall f1-score support0.0 1.00 1.00 1.00 500 1.0 1.00 1.00 1.00 268avg / total 1.00 1.00 1.00 768
[[500 0]
[ 0 268]]
SVM是非常流行的机器学习算法,主要用于分类问题,如同逻辑回归问题,它可以使用一对多的方法进行多类别的分类。
from sklearn import metrics from sklearn.svm import SVC # fit a SVM model to the data model = SVC()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
结果:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel=rbf, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
precision recall f1-score support0.0 1.00 1.00 1.00 500 1.0 1.00 1.00 1.00 268avg / total 1.00 1.00 1.00 768
[[500 0]
[ 0 268]]
除了分类和回归算法外,scikit-learn提供了更加复杂的算法,比如聚类算法,还实现了算法组合的技术,如Bagging和Boosting算法。
一项更加困难的任务是构建一个有效的方法用于选择正确的参数,我们需要用搜索的方法来确定参数。scikit-learn提供了实现这一目标的函数。
下面的例子是一个进行正则参数选择的程序:
import numpy as np from sklearn.linear_model import Ridge from sklearn.grid_search import GridSearchCV # prepare a range of alpha values to test alphas = np.array([1,0.1,0.01,0.001,0.0001,0]) # create and fit a ridge regression model, testing each alpha model = Ridge()
grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))
grid.fit(X, y)
print(grid) # summarize the results of the grid search print(grid.best_score_)
print(grid.best_estimator_.alpha)
结果:
GridSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, loss_func=None,
n_jobs=1,
param_grid={‘alpha’: array([ 1.00000e+00, 1.00000e-01, 1.00000e-02, 1.00000e-03,
1.00000e-04, 0.00000e+00])},
pre_dispatch=2*n_jobs, refit=True, score_func=None, scoring=None,
verbose=0)
0.282118955686
1.0
有时随机从给定区间中选择参数是很有效的方法,然后根据这些参数来评估算法的效果进而选择最佳的那个。
import numpy as np from scipy.stats import uniform as sp_rand from sklearn.linear_model import Ridge from sklearn.grid_search import RandomizedSearchCV # prepare a uniform distribution to sample for the alpha parameter param_grid = {'alpha': sp_rand()} # create and fit a ridge regression model, testing random alpha values model = Ridge()
rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100)
rsearch.fit(X, y)
print(rsearch) # summarize the results of the random parameter search print(rsearch.best_score_)
print(rsearch.best_estimator_.alpha)
结果:
RandomizedSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, n_iter=100,
n_jobs=1,
param_distributions={‘alpha’:
我们总体了解了使用scikit-learn库的大致流程,希望这些总结能让初学者沉下心来,一步一步尽快的学习如何去解决具体的机器学习问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27