京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS进行独立样本的T检验
对于相互独立的两个来自正态总体的样本,利用独立样本的T检验来检验这两个样本的均值和方差是否来源于同一总体。在SPSS中,独立样本的T检验由“Independent-Sample T Test”过程来完成。
实例
在有小麦丛矮病的麦田里,调查了13株病株和11株健株的植株高度,分析健株高度是否高于病株。其调查数据如下:
健株 26.0 32.4 37.3 37.3 43.2 47.3 51.8 55.8 57.8 64.0 65.3
病株 16.7 19.8 19.8 23.3 23.4 25.0 36.0 37.3 41.4 41.7 45.7 48.2 57.8
该数据保存在“DATA4-3.SAV”文件中,变量格式如图4-6,状态变量中:1表示病株,2表示健株。

图4-6
1)准备分析数据
在数据编辑窗口输入分析的数据,如图4-6所示。或者打开需要分析的数据文件“DATA4-3.SAV”。
2)启动分析过程
在主菜单选中“Analyze”中的“Compare Means”,在下拉菜单中选中“Independent -Sample T Test”命令。出现图4-7设置对话框。。

图4-7 独立样本T检验窗口
3)设置分析变量
从“Test Variable(s):”从左边的变量列表中选中变量后,点击
右拉按钮后,这个变量就进入到检验分析“Test Variable(s):”框里,用户可以从左边变量列表里选择一个或多个。本例选择“小麦丛矮病[株高]”。
“Grouping Variable(s):”栏是分组变量栏。从左边的变量列表中选中分组变量后,按
右拉按钮,这个变量就进入到“Grouping Variable(s):”框里。本例选择“状态”变量。
“Define Groups”按钮是定义分组变量的分组值。当该按钮可用时,出现图4-8对话框。

图4-8 定义分组值对话框
如果分组变量是离散型数值变量应选择“Use specified values”项,该项下面的“Group 1”和“Group 2”栏用于输入分组
变量值;字符型数据输入相应分组字符。若分组变量是连续型变量,应选择“Cut point”项,分组变量会按该项输入值分为大于和小于两组。
本例选择“Use specified values”项,在“Group 1”栏输入1;在“Group 2”栏输入2。按“Continue”按钮退回上一级对话框。
4)设置其他参数
点击“Options”按钮,打开设置检验的置信度和缺失值对话框。在“Confidence Interval:”框输入置信度水平,系统默认为95%;“Missing Values”框里的“Exclude cases analysis by analysis”栏,是只排除分析变量为缺失值的选择项,“Exclude cases listwise”是排除任何含有缺失值的选择项。
5)提交执行
输入完成后,在过程主窗口中单击“OK”按钮,SPSS输出分析结果如表4-5和表4-6。
6) 结果与分析
结果
表4-5 分组统计量列表 Group Statistics
表4-6 独立样本的检验结果 Independent Samples Test
表4-6“Levene's Test for Equality of Variances”列方差齐次性检验结果:F值为0.038,显著性概率为0.847,因此两组方差不显著。
那么应该从表4-6 的“Equal vari ances assumed”行读取数值。t值是-2.539,Sig. (2-tailed)是双尾t检验的显著性概率0.019,小于0.05。可以得出结论:病株与健株的株高差异显著。
两组的株高均值之差为13.56,平均病株低于健株13.56。差值的标准误为5.341。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12