
Storm常见问题及解决方案总结
Storm 是一个开源的、大数据处理系统,与其他大数据解决方案的不同之处在于它的处理方式。Hadoop 在本质上是一个批处理系统。数据被引入 Hadoop 文件系统 (HDFS) 并分发到各个节点进行处理。当处理完成时,结果数据返回到 HDFS 供始发者使用。Storm 支持创建拓扑结构来转换没有终点的数据流。不同于 Hadoop 作业,这些转换从不停止,它们会持续处理到达的数据。
1、storm集群配置JDK环境变量问题
问题分析:在linux系统下配置JDK后一般修改/etc/profile值进行环境变量配置,但是安装storm集群时会出现问题
问题解决:需要在/etc/.bashrc文件中也加入环境变量不然安装的JDK无法使用。
2、supervisor相关问题
1)安装后supervisor名称相同并且启动报错问题
问题分析:supervisor.cji中有行代码如下:
1
|
|
此代码是在启动supervisor时会找本机的hostname。
问题解决:修改每天机器的hostname与其相对应即可。
2)启动Supervisor 时,出现java.lang.UnsatisfiedLinkError异常
具体错误信息如下:
1
2
3
|
启动Supervisor 时,出现java.lang.UnsatisfiedLinkError:
/usr/local/lib/libjzmq.so.0.0.0: libzmq.so.1: cannot open shared object
file: No such file or directory 异常。
|
问题分析:未找到zmq 动态链接库。
问题解决1:配置环境变量 export LD_LIBRARY_PATH=/usr/local/lib
问题解决2:编辑/etc/ld.so.conf 文件,增加一行:/usr/local/lib,再次执行即可
使用sudo ldconfig 命令,重启Supervisor
3、发布topologies时,序列化log4j.Logger异常
问题分析:日志系统无法正确正确处理序列化操作
问题解决:使用slf4j替换log4j日志jar包处理
4、提交topology时出现如下异常:
1
2
3
4
5
6
|
Exception in thread "main" java.lang.IllegalArgumentException: xxx host is not set
at backtype.storm.utils.NimbusClient.(NimbusClient.java:30)
at backtype.storm.utils.NimbusClient.getConfiguredClient(NimbusClient.java:17)
at backtype.storm.StormSubmitter.submitJar(StormSubmitter.java:78)
at backtype.storm.StormSubmitter.submitJar(StormSubmitter.java:71)
at backtype.storm.StormSubmitter.submitTopology(StormSubmitter.java:50)
|
问题分析:启动nimbus没有问题,异常原因是conf_dir路径设置错误
问题解决:修改bin/storm脚本,增加如下代码:
1
|
CONF_DIR = STORM_DIR + "/conf"
|
5、在使用storm0.7一下版本时,时间长会出现outofmenmory
问题分析:低于storm0.7版本的没触发一个tuple会创建一个hashmap存储该tuple所在的消息树结构,长时间会给gc造成巨大的压力导致出现outofmemory
问题解决:升级storm版本即可解决问题。
6、storm连接mysql数据库报异常
1
|
message from server:"Host FILTER" is not allowed to connect to this MySQL server
|
问题分析:可能是没有给其IP访问Mysql数据库权限导致
问题解决:登录mysql数据库,执行如下命令:
1
|
grant all on *.* to root@'%' identified by "123456";
|
此操作是给任意IP地址赋予访问权限(命令中*.*是通配任何IP,可指定IP 用户名:root 密码:123456)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10