
李垠序编译
来自雪晴数据网
R生态体系有其非常之美,在于它的新包贡献系统,而这也可能是R使用者显著增加的根本原因。这一特点与坚如磐石的基础包版本库(CRAN)结合,给了R一个非常优越的条件。任何有足够专业技术的人,通过合适的方法都可以为CRAN贡献包。
仅仅关注CRAN可能无法发现其优秀的地方:事实上,对R的初学者而言,开源会让他们遇到很多麻烦。怎样通过一个有机的包系统来构造高质量的集成软件?学习这些需要花费许多时间和精力。不过即使是相对新手的人来说,发现那些支撑R语言发展的基础包并不难。那些可靠地为R语言增加价值的包已经出现在CRAN’s package dependency network。发现一个新包,并且最终有用是另一件重要的事情。出于探索精神,这里有5个可靠的新包,我认为数据科学家会对其感兴趣。在CRAN上,这些包都没有经过长时间的检验,因此请以合作的心态去探索他们吧。
AzureML V0.1.1
云计算对每个实践数据科学家都很重要(或者即将变得很重要)。微软的AzureML为R(和Python)程序员提供了一个非常丰富的机器学习环境。如果你还不是一个Azure的使用者,这个包花了大工夫来克服上手这一环境的困难。它提供了函数来将R代码从你的本地环境推送到Azure云端,并将函数和模型发布为web服务.图文教程会一步一步地教你,从获得试用账号和必要的证书到发布你的第一个简单的实例。
distcomp V0.25.1
对大数据集的分布式计算是非常棘手的,尤其是在不能或很难共享集群间数据的环境当中。Distcomp聪明地包执行了一个局部似然算法(详见:paper by Narasimham et al)使得在非聚合的数据集上建立一个复杂的统计模型成为可能。更多详细的信息可以参考早期博文。
rotationForest V0.1
介于其在多种数据集上稳定良好的表现,森林算法对许多数据科学家来说是一个必选的组合方法。它的一个新变种,基于特征空间随机子集的主成分分析有着非常好的应用前景。paper by Rodriguez et. al解释了PCA对特征空间旋转的意义,并将旋转森林算法与标准随机森林、Adaboost算法进行了比较。
rpca V0.2.3
给定一个兼有低秩性和稀疏性的矩阵,rcpa使用稳健PCA方法来弥补这一特性。Netflix数据科学家发布了这个算法(基于paper by Candes et al)。今年早些的时候,他们公布了这一算法在异常检测问题上的惊人成功。
SwarmSVM V0.1
支持向量机也是一个主流的机器学习算法。SwarmSVM 基于聚类方法,提供了三个组合算法来训练支持向量机(详见paper by Gu and Han)。程序包的图文教程提供了一个实例来介绍该方法。
原文:5 New R Packages for Data Scientists
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10