
鉴于许多企业组织在竭力采用易于使用的数据分析技术让大数据广泛可用,它们应考虑将部分功能外包到云端。如果选择一种大数据即服务解决方案,可以处理像hadoop、Spark和Hive等这些大数据技术很耗费资源、很耗费时间的操作方面,企业就能专注于大数据的好处,少关注枯燥乏味的工作。
大数据的出现带来了以下几方面的基本问题:
企业组织如何发挥其潜力 如何将其价值引入到企业组织的更广泛部门如何将该数据与之前就有的企业数据仓库结合起来,比如企业数据仓库(EDW)和数据集市
如今商业化应用的主流大数据技术是Apache Hadoop。它与作为更庞大的Hadoop生态系统一部分的其他技术结合使用,比如Apache Spark内存处理引擎、Apache Hive数据仓库基础设施和Apache HBase NoSQL存储系统。
企业要将大数据纳入到其核心企业数据架构,势必需要改动或购置大数据即服务技术。适合如今需求的现代数据架构应当包括以下这几个部分:
Hadoop上的高性能、分析就绪的数据仓库
大数据如何才能做到速度快、随时可供分析?构建便于分析的大数据环境的一个最佳实践就是,创建分析型数据仓库,可以从Hadoop数据湖装入最常用的数据集,然后将它们组织到维度模型。有了在Hadoop上的便于分析的数据仓库,企业组织就能获得最快的查询响应。这种模型便于业务用户了解,它们便于探究业务环境逐渐发生了怎样的变化。
这个分析数据仓库不但要支持报告已知用例,还要支持探究分析非计划场景。整个过程应该对用户来说是无缝的,不需要知道要不要直接查询Hadoop上的分析型数据仓库。
便于“业务语言”数据分析的语义层
大数据如何才能被更多的业务用户易于访问?为了隐藏原始数据中的复杂性,并以通俗易懂的业务术语将数据展示给业务用户,就需要语义覆盖层(semantic overlay)。这个语义层是数据的逻辑表示,可以在其中运用业务规则。
比如说,语义层可以将“高价值客户”定义为“时间在三年以上,经常购买新产品或续约的那些客户”。“高价值客户”方面的数据可以从不同的表格获取,经过不同层次的计算和转换,最后进入到语义层,这一切都是查询“高价值客户”的业务用户所看不见的。
多租户大数据环境
如何在整个企业组织访问大数据,不管人们位于何处?由于广泛需要数据分析,企业组织需要采用一种混合的集中式和分散式数据方法。这让不同的术语可以兼顾本地数据集和语义定义,同时又访问IT部门创建的企业数据资源。
这种混合方法可以用多租户数据架构来实现。在这种架构中,IT部门收集和清理数据后,放入到共享的Hadoop数据湖,并利用该数据,准备好集中式语义层和分析型数据仓库。
随后,IT部门为不同的业务小组(比如财务、销售、营销和客户支持),创建集中式数据环境的虚拟拷贝。这样一来,IT部门保留了数据治理和语义规则方面的统一权限,同时业务小组和部门又可以对照存储在Hadoop中的历史或企业数据,真正看到其日常业务活动的影响。
用户界面友好的消费分析
怎样才使用户容易掌握大数据分析?就最终用户处理大数据而言,最后要考虑的一个问题是,数据将以哪种形式来表示。这些数据界面将满足每个用户的独特、个别的要求。这一需求包括:为业务用户提供高度交互和响应的仪表板,为分析员提供界面直观的可视化发现机制,以及为信息消费者提供计划报表。
虽然每一种方式都很独特,但最佳实践是确保每个界面都不是单独的工具,那样在创建、协作和发布信息时可以确保一致性和准确性。只有通过确保数据价值仍然一致的语义层,才能做到这一点,而数据表示可能因用户界面而异。
大数据对企业来说越来越重要,它是企业数据架构的一个基本部分。想充分发掘大数据的潜力,企业就要加快购置可高效地分析和存储数据的技术。面向大数据和分析的云解决方案让这成为了可能。有了这种解决方案,企业就能为未来的数据增长作好充分准备,反过来在日益发展的大数据生态系统中有出色的表现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09