京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析 将对智慧城市产生极大影响
现代服务业发展水平是衡量一个国家和地区现代化程度的重要标志,是反映一个国家和地区综合实力的重要内容,同时也是实现经济可持续发展的重要力量。随着云计算及大数据等新兴技术的兴起,为进一步加快发展现代服务业,优化产业结构,构建现代产业体系,智慧型服务产业顺势而生。
随着首钢园区智慧城市五大能力的建设,平台战略稳步向前推进,各类型平台沉淀下来了海量的数据,如空间数据、民生数据、经济数据等。这些数据如金子般珍贵,如何合理充分地利用这些数据是首钢园区智慧城市建设成败的关键。
首钢园区智慧城市产业服务平台
一、大数据分析与决策成为必然选择
智慧城市体系架构可分为四层,分别为感知层、传输层、平台层、应用层。感知层是智慧城市体系对现实世界进行感知、识别和信息采集的基础性物理网络,海量的数据在感知层产生。由城市数字化到城市智慧化,关键是要实现对感知层获取的信息的智慧处理,其核心是引入了大数据处理技术。
智慧城市建设不仅仅需要有众多的摄像头、传感器等来收集信息,更需要有一个智慧的大脑系统,来统筹管理和运用好收集到的信息。一个智慧城市的建设,是离不开强大信息处理后台系统的建设的。只有建立起相应的处理能力,才可以将这些收集到的信息用于更加有效、科学的城市管理,提供更好的服务。大数据技术,对数据进行深度融合、综合分析和挖掘,以获得更有价值的信息。
二、大数据分析与决策对于智慧城市建设的重要意义
智慧城市的建设离不开大数据,大数据将遍布智慧城市的方方面面,从政府决策与服务,到人们衣食住行的生活方式,再到城市的产业布局和规划,直到城市的运营和管理方式,都将在大数据支撑下走向“智慧化”,大数据将成为智慧城市的智慧引擎。
大数据分析对于智慧城市建设的重要意义主要体现在以下五个方面:
1、大数据分析为智慧城市的各个领域提供强大的决策支持。
在城市规划方面,通过对城市地理、气象等自然信息和经济、社会、文化、人口等人文社会信息的挖掘,可以为城市规划提供强大的决策支持,强化城市管理服务的科学性和前瞻性。在交通管理方面,通过对道路交通信息的实时挖掘,能有效缓解交通拥堵,并快速响应突发状况,为城市交通的良性运转提供科学的决策依据。在环境监测方面,构建大数据监控分析平台。深度监控排污企业生产、排放、存储、运输各个环节,从源头上消除企业监控数据造假的可能性,为监察部门提供可靠的执法依据,并结合环境监测数据,挖掘企业排污对当地环境的影响。
现代服务业发展水平是衡量一个国家和地区现代化程度的重要标志,是反映一个国家和地区综合实力的重要内容,同时也是实现经济可持续发展的重要力量。随着云计算及大数据等新兴技术的兴起,为进一步加快发展现代服务业,优化产业结构,构建现代产业体系,智慧型服务产业顺势而生。
随着首钢园区智慧城市五大能力的建设,平台战略稳步向前推进,各类型平台沉淀下来了海量的数据,如空间数据、民生数据、经济数据等。这些数据如金子般珍贵,如何合理充分地利用这些数据是首钢园区智慧城市建设成败的关键。
首钢园区智慧城市产业服务平台
一、大数据分析与决策成为必然选择
智慧城市体系架构可分为四层,分别为感知层、传输层、平台层、应用层。感知层是智慧城市体系对现实世界进行感知、识别和信息采集的基础性物理网络,海量的数据在感知层产生。由城市数字化到城市智慧化,关键是要实现对感知层获取的信息的智慧处理,其核心是引入了大数据处理技术。
智慧城市建设不仅仅需要有众多的摄像头、传感器等来收集信息,更需要有一个智慧的大脑系统,来统筹管理和运用好收集到的信息。一个智慧城市的建设,是离不开强大信息处理后台系统的建设的。只有建立起相应的处理能力,才可以将这些收集到的信息用于更加有效、科学的城市管理,提供更好的服务。大数据技术,对数据进行深度融合、综合分析和挖掘,以获得更有价值的信息。
二、大数据分析与决策对于智慧城市建设的重要意义
智慧城市的建设离不开大数据,大数据将遍布智慧城市的方方面面,从政府决策与服务,到人们衣食住行的生活方式,再到城市的产业布局和规划,直到城市的运营和管理方式,都将在大数据支撑下走向“智慧化”,大数据将成为智慧城市的智慧引擎。
大数据分析对于智慧城市建设的重要意义主要体现在以下五个方面:
1、大数据分析为智慧城市的各个领域提供强大的决策支持。
在城市规划方面,通过对城市地理、气象等自然信息和经济、社会、文化、人口等人文社会信息的挖掘,可以为城市规划提供强大的决策支持,强化城市管理服务的科学性和前瞻性。在交通管理方面,通过对道路交通信息的实时挖掘,能有效缓解交通拥堵,并快速响应突发状况,为城市交通的良性运转提供科学的决策依据。在环境监测方面,构建大数据监控分析平台。深度监控排污企业生产、排放、存储、运输各个环节,从源头上消除企业监控数据造假的可能性,为监察部门提供可靠的执法依据,并结合环境监测数据,挖掘企业排污对当地环境的影响。
2、大数据分析能够给智慧城市的管理和服务系统提供新的洞察力。
城市的各项管理和服务是持续进行的,日积月累,自然会形成大量数据的积累,在这些数据中也必然隐藏着对这个城市一些潜在特征的描述。社会科学的很多规律和经验,在海量积累的数据里自然存在着,在等待我们去发现和了解,从而为城市的智慧化、精细化管理提供决策依据。例如,各城市还可以根据对环境监测历史数据的综合分析,预测火灾、水灾等自然灾害的发生规律。
3、大数据分析是避免“信息孤岛”提高资源利用率的必要手段。
“信息孤岛”现象很普遍。大数据技术对解决上述难题提供了新的希望。大数据技术能够在收集智慧城市各模块数据的基础上,对数据进行交互分析,从而建立起基于数据的、超越传统感知和经验的辅助决策系统。大数据使数据共享成为可能,政府各个部门的既有数据库可以实现高效互联互通,极大提高政府各部门间协同办公能力,提高为民办事的效率,大幅降低政府管理成本。
4、大数据分析将提高城市居民的生活品质。
与民生密切相关的智慧应用包括智慧交通、智慧医疗、智慧家居、智慧安防等,这些智慧化的应用将极大地拓展民众生活空间,引领智慧城市大数据时代智慧人生的到来。大数据是未来人们享受智慧生活的基础,将改变传统“简单平面”的生活常态,通过大数据的应用服务,将使信息变得更加泛在,使生活变得多维和立体。
5、大数据分析将大大提高企业的核心竞争力。
大数据处理将决定企业的核心竞争力。掌控数据就可以支配市场,意味着巨大的投资回报。过去很多企业对自身经营发展的分析只停留在简单业务信息层面,缺乏对客户需求、业务流程、平拍营销、市场竞争等方面的深入分析。在大数据时代,企业通过收集和分析大量内部和外部的数据,获取有价值的信息。通过挖掘这些信息,企业可以预测市场需求,进行智能化决策分析。
三、结语
智慧城市的大数据时代已经到来。充分利用以大数据技术为支撑的综合智能化分析和决策系统,才能使智慧城市的管理系统和服务系统充分、有效、合理地发挥各自的作用,大数据正是智慧城市建设和运营的基石。首钢园区的智慧城市建设,要从大数据入手,创新智慧产业、优化城市管理、提升服务效率,从而实现智慧城市让城市生活更美好、更幸福的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12