京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘:如何寻找相关项
数据科学家需要具备专业领域知识并研究相应的算法以分析对应的问题,而数据挖掘是其必须掌握的重要技术。以帮助创建推动业务发展的相应大数据产品和大数据解决方案。EMC最近的一项调查也证实了这点。调查结果显示83%的人认为大数据浪潮所催生的新技术增加了数据科学家的需求。本文将为您展示如何基于一个简单的公式查找相关的项目。请注意,此项技术适用于所有的网站(如亚马逊),以个性化用户体验、提高转换效率。
查找相关项问题
要想为一个特定的项目查找相关项,就必须首先为这两个项目定义相关之处。而这些也正是你要解决的问题:
在博客上,你可能想以标签的形式分享文章,或者对比查看同一个人阅读过的文章
亚马逊站点被称为“购买此商品的客户还购买了”的部分
一个类似于IMDB(Internet Movie Database)的服务,可以根据用户的评级,给出观影指南建议
不论是标签、购买的商品还是观看的电影,我们都要对其进行分门别类。这里我们将采用标签的形式,因为它很简单,而且其公式也适用于更复杂的情形。
以几何关系重定义问题
现在以我的博客为例,来列举一些标签:
好,我们来看看在欧式空间几何学中如何表示这些标签。
我们要排序或比较的每个项目在空间中以点表示,坐标值(代表一个标签)为1(标记)或者0(未标记)。
因此,如果我们已经获取了一篇标签为“API”和“Browser”的文章,那么其关联点是:
现在这些坐标可以表示其它含义。例如,他们可以代表用户。如果在你的系统中有6个用户,其中2个用户对一篇文章分别评了3星和5星,那么你就可以针对此文章查看相关联的点(请注意顺序):
现在我们可以计算出相关矢量之间的夹角,以及这些点之间的距离。下面是它们在二维空间中的图像:
欧式几何空间距离
计算欧式几何空间两点之间距离的数学公式非常简单。考虑相关两点A、B之间的距离:
两点之间的距离越近,它们的相关性越大。下面是Ruby代码:
这是一些示例代码,你可以直接复制运行:
你是否留意到我们之前选择的数据存在一个缺陷?前两篇文章对于标签“[“Publishing”, “Web”, “API”]”有着相同的欧氏几何空间距离。
为了更加形象化,我们来看看计算第一篇文章所用到的点:
只有四个坐标值不同,我们再来看看第二篇文章所用到的点:
与第一篇文章相同,也只有4个坐标值不同。欧氏空间距离的度量取决于点之间的差异。这也许不太好,因为相对平均值而言,有更多或更少标签的文章会处于不利地位。
余弦相似度
这种方法与之前的方法类似,但更关注相似性。下面是公式:
下面是Ruby代码:
对于以上示例,我们对文章进行分类得到:
这种方法有了很大改善,我们的代码可以很好地运行,但它依然存在问题。
示例中的问题:Tf-ldf权重
我们的数据很简单,可以轻松地计算并作为衡量的依据。如果不采用余弦相似度,很可能会出现相同的结果。
Tf-ldf权重是一种解决方案。Tf-ldf是一个静态统计量,用于权衡文本集合中的一个词在一个文档中的重要性。
根据Tf-ldff,我们可以为坐标值赋予独特的值,而并非局限于0和1.
对于我们刚才示例中的简单数据集,也许更简单的度量方法更适合,比如Jaccard index也许会更好。
皮尔逊相关系数(Pearson Correlation Coefficient)
使用皮尔逊相关系数(Pearson Correlation Coefficient)寻找两个项目之间的相似性略显复杂,也并不是非常适用于我们的数据集合。
例如,我们在IMDB中有2个用户。其中一个用户名为John,对五部电影做了评级:[1,2,3,4,5]。另一个用户名为Mary,对这五部电影也给出了评级:[4, 5, 6, 7, 8]。这两个用户非常相似,他们之间有一个完美的线性关系,Mary的评级都是在John的基础上加3。
计算公式如下:
代码如下:
曼哈顿距离算法
没有放之四海而皆准的真理,我们所使用的公式取决于要处理的数据。下面我们简要介绍一下曼哈顿距离算法。
曼哈顿距离算法计算两点之间的网格距离,维基百科中的图形完美诠释了它与欧氏几何距离的不同:
红线、黄线和蓝线是具有相同长度的曼哈顿距离,绿线代表欧氏几何空间距离。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16