京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我要说的第一个案例是大数据如何减少美国医院急救数量。
因为美国急救价格很贵,而很多需要急救的病人没有医疗保险,美国政府在支付急救费用上承担着大量花费,但是最近一个非营利性组织 Code for America 发现:其实美国医院急救问题的症结不在于有很多人打急救电话,而在于总是有一部分人一次又一次打急救电话。
他们给我举的一个例子是:有个老人被发现一个月内有四次因为中风被送入急救室,但原因其实不是老人没有治疗中风的药,而是这个老人的家人总是在偷她的药片卖钱。
解决方法因此变得很简单了,那就是买一个带锁的医疗箱给她。自那以后,这个老人再没有中风过。
所以如果美国政府要省下费用,他们只需把这部分大量使用急救资源的病人找出来,然后在他们被送往急救前就解决他们身上更深层次的问题。接下来是怎么收集大数据,这就涉及到美国多个部门的合作:包括美国消防局、警察局和城市规划局。
因为消防局和警察局有每个急救电话的种类、地址和时间等信息,它们两个部门基本可以确定是哪些地址的患者在频繁打急救电话;而城市规划局(或工商局)有这个地址属于什么种类建筑的信息,它可以用来决定派遣什么样的人员前往。
比如如果一个月打 4 次急救电话的地址是“居民楼”,那就需要派一个护士过去看看什么情况;而如果一个月打 4 次急救电话的地址是“餐馆”,那就需要派其他种类的人去。
交通管理部门
交通其实是个大热点,每时每刻都在产生大量有价值信息,但不同交通信息系统目的是不一样的,比如地铁、地铁的检票站能够确定乘客从哪个站进、哪个站出;而调度系统则能确定在某个时段有几班车从哪里开往哪里。
这两个系统的数据分开各有各的用处,但如果将它们整合,基本就能知道某个时刻某班车上有多少乘客、拥挤度如何等,比如如果过分拥挤,你可以决定增加运力。
另一个例子是:一个乘客从 A 到 B,他需要先乘坐公交车,然后再乘坐地铁。通常,这个乘客数据是分别存在地铁和公交两个系统,所以数据到了美国交通管理部门,即使只是一个乘客从 A 到 B,它也会被认为是两次不同的行程。
但如果将公交和地铁数据整合后会发生什么呢?美国交通管理部门会把从 A 到 B 的两次旅行连在一起,确认为是一次行程,而如果发现有大量人的实际需求其实是从 A 到 B,而非是从 A 到某一个中间点 C,那么市政府就会考虑是否直接做一个从 A 到 B 的路线。
外卖公司
在旧金山送外卖的创业公司最近非常火,Sprig 和 SpoonRocket 都拿到了千万美金级别的融资,它们模式是在网上或手机上点单,然后自己雇人做健康营养的快餐,派人送到用户手中。重要的信息来了,Sprig在6月初招募了 Uber 做大数据的 Angela Wise,而 SpoonRocket 也刚刚招募了一个人做大数据。
为什么一个做外卖的也对大数据这么热情?因为通过用户数据分析,他们能提前预测在哪个地区、什么时间用户订单可能会一下爆棚,由此,外卖公司可以提前调整运力并缩短用户等待时间,因为外卖公司的用户体验很大程度取决于能否在用户下订单后 10-20 分钟内把快餐送到。
这些公司也使用大数据做外卖车辆的路线优化,目的是保证如何以最有效、最省成本方式将快餐送到用户手里。
当然,美国这里的外卖不像中国写字楼里的外卖,它不是每天中午 11 点 30 分写个单子,然后 12 点送到,美国的外卖基本都是随时点、随时送,所以做预测就非常重要。
而实际上,大数据应用也对公司扩张决策起到指导作用。比如 SpoonRocket 创始人告诉我,他正考虑跳出旧金山进入像洛杉矶、西雅图等西海岸其它城市,但进入哪个城市对 SpoonRocket 业务有最大好处?大数据可以帮他排出不同城市优先级,使 SpoonRocket 能选择优先进入的城市。
via:硅发布·周泰来
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13