
“大数据”时代,什么是数据分析做不了的?
数据不懂社交。大脑在数学方面很差劲(不信请迅速心算一下437的平方根是多少),但是大脑懂得社会认知。人们擅长反射彼此的情绪状态,擅长侦测出不合作的行为,擅长用情绪为事物赋予价值。
计算机数据分析擅长的是测量社会交往的“量”而非“质”。网络科学家可以测量出你在76%的时间里与6名同事的社交互动情况,但是他们不可能捕捉到你心底对于那些一年才见2次的儿时玩伴的感情,更不必说但丁对于仅有两面之缘的贝阿特丽斯的感情了。因此,在社交关系的决策中,不要愚蠢到放弃头脑中那台充满魔力的机器,而去相信你办工作上的那台机器。
数据不懂背景。人类的决策不是离散的事件,而是镶嵌在时间序列和背景之中的。经过数百万年的演化,人脑已经变得善于处理这样的现实。人们擅长讲述交织了多重原因和多重背景的故事。数据分析师则不懂得如何叙事,也不懂得思维的浮现过程。即便是一部普普通通的小说,数据分析也无法解释其中的思路。
数据会制造出更大的“干草垛”。这一观点是由纳西姆•塔勒布(Nassim Taleb,著名商业思想家,著有《黑天鹅:如何应对不可知的未来》等书作)提出的。随着我们掌握的数据越来越多,可以发现的统计上显著的相关关系也就越来越多。这些相关关系中,有很多都是没有实际意义的,在真正解决问题时很可能将人引入歧途。这种欺骗性会随着数据的增多而指数级地增长。在这个庞大的“干草垛”里,我们要找的那根针被越埋越深。大数据时代的特征之一就是,“重大”发现的数量被数据扩张带来的噪音所淹没。
大数据无法解决大问题。如果你只想分析哪些邮件可以带来最多的竞选资金赞助,你可以做一个随机控制实验。但假设目标是刺激衰退期的经济形势,你就不可能找到一个平行世界中的社会来当对照组。最佳的经济刺激手段到底是什么?人们对此争论不休,尽管数据像海浪一般涌来,就我所知,这场辩论中尚未有哪位主要“辩手”因为参考了数据分析而改变立场的。
数据偏爱潮流,忽视杰作。当大量个体对某种文化产品迅速产生兴趣时,数据分析可以敏锐地侦测到这种趋势。但是,一些重要的(也是有收益的)产品在一开始就被数据摈弃了,仅仅因为它们的特异之处不为人所熟知。
数据掩盖了价值观念。我最近读到一本有着精彩标题的学术专著——《‘原始数据’只是一种修辞》。书中的要点之一就是,数据从来都不可能是“原始”的,数据总是依照某人的倾向和价值观念而被构建出来的。数据分析的结果看似客观公正,但其实价值选择贯穿了从构建到解读的全过程。
这篇文章并不是要批评大数据不是一种伟大的工具。只是,和任何一种工具一样,大数据有拿手强项,也有不擅长的领域。正如耶鲁大学的爱德华•图弗特教授(Edward Tufte)所说:“这个世界的有趣之处,远胜任何一门学科。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07