
过度忠于数据和分析,影响员工流失率
让我们回到1911年去探究原因。那是进步主义(Progressivism)时代。那一年泰勒在《科学管理原则》(The Principles of Scientific Management)一书的引言中写道:“在过去人是最重要的;在未来系统必定是最重要的。”泰勒的想法与伍德罗·威尔逊(Woodrow Wilson)不谋而合——后一年威尔逊当选为美国总统。威尔逊认为社会工程(socialengineering)优先于个人权利。
泰勒提出了一个简单的想法:如果你能找出并消除所有浪费时间的不合理动作,你就能提高劳动生产率。要做到这一点,管理者得观察、记录、衡量和分析工人的动作。在工厂车间里员工不再随心所欲地行动;不再采用“随机应变”的做法。泰勒希望将复杂的制造工艺简化为最细微、最具重复性的步骤,使任何工人都能上手。
可以预见,泰勒主义(Taylorism)需要对工人及其工作实践进行近乎专制的控制。泰勒将其发起的运动视为工人的救星,原因是生产率提高的工人能赚到更多的钱。工人们确实赚到了更多的钱。泰勒的理论在亨利·福特(Henry Ford)的汽车制造厂的流水线上得到了完美实现。而 且正如泰勒曾预测的,福特向生产率最高的工人支付的工资,是当时工厂作业一般工资水平的2倍。
但福特对泰勒式严密分析的应用无法适应二战后的市场变化。然而通用汽车公司的阿尔弗雷德·斯隆(Alfred Sloan)有更深入的见解。他明白单靠分析无法打造一家强健的企业。斯隆明白,人类所追求的不只是功利;他们也渴望生活的意义。在斯隆的管理下,通用汽车根据人们愿望层次的不同对汽车市场进行细分,从经济实惠的雪佛兰到豪华型的凯迪拉克。该公司得以蓬勃发展。
科学管理——及其对数据和趋势分析的过度依赖倾向——是诱人的,因为它可衡量,能提供快速投资回报,因此很容易被证明是合理的。这一点在当今时代尤其适用,因为收集、分析数据的成本下降速度甚至快于摩尔定律。数据和分析似乎是医治企业病痛的速效药。
危险并不在于使用数据和分析——不这样做的管理人员是傻瓜——而在于对其过度依赖。它们的优势很快会被竞争冲垮。更糟的是,拘泥于数据和分析总是会导致强烈的对抗:员工会反抗;客户会流失;股东想知道是什么让自己遭受打击的。
泰勒的缺陷是致命的。他认为员工懒惰、无知、缺乏好奇心,敦促管理者将其视为可替换的零件。他提倡实行极端的可预测性和管理控制,这使得员工的工作内容变得沉闷乏味,尽管这种做法提高了他们的工资。泰勒认为这种折衷是值得的。一开始员工们也这么想——直到他们改变了看法。
泰勒的错误会重演吗?已经开始了。亚马逊像杂草一样疯狂成长,但它不能或不会出现盈利,投资者正在失去耐心。亚马逊效忠于数据和分析的做法,但其员工流失率无论在高科技还是零售行业都是最高的。这意味着亚马逊由数据驱动的非凡效率被招聘、再培训及挽留的较高成本所伤害。
相比之下,苹果公司(Apple)是全球最有价值的企业,其业务和财务是由数据驱动的。但创建该公司并领导其复兴的史蒂夫·乔布斯(Steve Jobs)从未将人类的非理性视为应该被消灭的弱点。乔布斯接受并激励人性混乱的一面。他怀疑市场数据——他很少出错。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07