京公网安备 11010802034615号
经营许可证编号:京B2-20210330
产品经理如何进行数据分析
流量相关数据:IP、PV、在线时间、跳出率、新用户比例;
订单相关数据:总订单、有效订单、订单有效率、总销售额、客单价、毛利润、毛利率;
转化率相关:下单转化率、付款转化率。
简要说明:因为我们已经实现基础的WEB版数据分析系统(有些公司用进销存软件),所以常规性的销售额、利润、利润率,都是可以通过系统实现的。因为直接与商城后台对接,库存管理都已经做进去了,分析数据时候,后台的原始数据都有,设定好各项公式,想要的结果都出来了,这样实现比用软件效率更好,且可以根据各自的需求灵活开发。
由于会出现用户今日下单,明日付款,所以订单有效率、销售额、转化率、客单价会动态变化,靠EXCEL基本是做不来,所以灵活对接系统非常重要,如果没有,也可以参考这方面的需求去开发。
第二项:每周数据分析(核心)
用户下单和付款不一定会在同一天完成,但一周的数据相对是精准的,所以我们把每周数据作为比对的参考对象,主要的用途在于,比对上周与上上周数据间的差别,运营做了某方面的工作,产品做出了某种调整,相对应的数据也会有一定的变化,如果没有提高,说明方法有问题或者本身的问题并在与此。
网站使用率:IP、PV、平均浏览页数、在线时间、跳出率、回访者比率、访问深度比率、访问时间比率;
这是最基本的,每项数据提高都不容易,这意味着要不断改进每一个发现问题的细节,不断去完善购物体验。来说明下重要的数据指标:
跳出率:跳出率高绝不是好事,但跳出的问题在哪里才是关键。我的经验,在一些推广活动或投放大媒体广告时,跳出率都会很高,跳出率高可能意味着人群不精准,或者广告诉求与访问内容有巨大的差别,或者本身的访问页面有问题。常规性的跳出率我注于登录、注册、订单流程1-3步、用户中心等基础页面,如果跳出率高于20%,我觉得就有不少的问题,也根据跳出率来改进购物流程和用户体验。
回访者比率=一周内2次回访者/总来访者,意味着网站吸引力,以及会员忠诚度,如果在流量稳定的情况下,此数据相对高一些会比较高,太高则说明新用户开发的太少,太低则说明用户的忠诚度太差,复购率也不会高。
访问深度比率=访问超过11页的用户/总的访问数,访问时间比率=访问时间在10分钟以上的用户数/总用户数,这两项指标代表网站内容吸引力,数据比率越高越好。
运营数据:总订单、有效订单、订单有效率、总销售额、客单价、毛利润、毛利率、下单转化率、付款转化率、退货率;
每日数据汇总,每周的数据一定是稳定的,主要比对于上上周的数据,重点指导运营内部的工作,如产品引导、定价策略、促销策略、包邮策略等。
比对数据,为什么订单数减少了?但销售额增加了?这是否是好事?
对比数据,为什么客单价提高了?但利润率降低了?这是否是好事?
对比数据,能否做到:销售额增长,利润率提高,订单数增加?这不是不可能。
所有的问题,在运营数据中都能够找到答案。
第三项:用户分析
会员分析:新会员注册、新会员购物比率、会员总数、所有会员购物比率;
概括性分析会员购物状态,重点在于本周新增了多少会员,新增会员购物比率是否高于总体水平。如果你的注册会员购物比率很高,那引导新会员注册不失为提高销售额的好方法。
会员复购率:1次购物比例、2次购物比例、3次购物比例、4次购物比例、5次购物比例、6次购物比例;
转化率是体现的是B2C的购物流程、用户体验是否有好,可以叫外功,复购率则体现B2C整体的竞争力,绝对是内功,这包括知名度、口碑、客户服务、包装、发货单等每个细节,好的B2C复购率能做到90%,没有复购率的B2C绝对没有任何前途,所以这也能够理解为什么很多B2C愿意花大钱去投门户广告,为了就是获取用户的第一次购买,从而获得长期的重复购买。但某些B2C购物体验做的不好,花大钱砸广告,这纯属烧钱行为。
所以我觉得运营的核心工作,一方面是做外功,提高转化率,获取消费者第一次购买行为,另外一方面就是做内功,提高复购率,B2C根本也就在重复购买。所以B2C是个综合学科,做好每门功课真是不容易,不过也就是依靠每个细节,才奠定了B2C发展的基石。
中国的B2C是幸运的,因为中国的消费者很宽容,你欺骗我一次,我可能还会原谅你,说实话给消费者选择的空间也并不是那么多,但随着新崛起B2C的成长,对服务的关注与投入,我相信未来的B2C会是个服务行业,而不是搬运工。
第四项:流量来源分析
我们用的是Google Analytics,统计的数据比较详细,流量来源分析我觉得最重要的意义是:
第一,监控各渠道转化率,这是运营的核心工作,针对不同的渠道做有效的营销,IP代表着力度,转化率代表着效果;
第二,发掘有效媒体,转化率的数据让我们很清晰的了解什么样的渠道转化效果好,那么以此类推,同样的营销方式,用在同类的渠道上,效果差不到哪去,BD或广告就可以去开发同类的合作渠道,复制成功经验,做产品上产品中国。
流量分析是为运营和推广部门指导方向的,除了关注转化率,还有像浏览页数、在线时间,都是评估渠道价值的指标。z
第五项:内容分析
主要的两项指标:退出率和热点内容
退出率是个好医生,很适合给B2C检查身体,哪里的退出率高,基本会说明有些问题,重点关注登录、注册、购物车、用户中心,这些是最基础的,但也是最关键的。一般我会列出TOP20退出率页面,然后运营部会重点讨论为什么,然后依次进行改进,不过我们今年做的很粗旷,做得也不是很好,来年重点完善。
热点内容这部分是用来指导运营工作的,消费者最关注什么,什么产品、分类、品牌点击最高,这些数据在新的运营工作中做重点引导,推荐消费者最关注的品牌、促销最关注的商品等等。
第六项:商品销售分析
这部分是内部数据,根据每周、每月的销售详情,了解经营状况,做出未来销售趋势的判断,这部分数据模型还在规划中,每家的情况都不同,所以这里就不做说明了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27