
地理教学中使用WPS表格分析趋势数据 学地理的“三关三步”
在地理课的教学中适当的引入信息化方式,不仅仅可以从本质上帮助学生理解地理信息数据中所蕴含的内容,还有助于培养学生处理复杂数据的能力。
高中地理中的数据很多都是跟趋势有关的,如自然地理中的温度、气压、海拔等系列相关数据和人文地理中人口变化等内容都涉及到两个或者多个相关量的变化情况。WPS表格具有强大的图表功能,不仅能以多种形式从各方面将数据予以展示,还具有一定的分析功能,为具有变化趋势的相关数据添加趋势线并做出评价。
现以上述内容为例,将高中地理课堂中的实例予以展示。
1.气温-海拔变化趋势教学
一般来说,气温随海拔升高而降低,一般来说是海拔每升高1km,气温平均下降6℃左右。向学生提供某海滨城市的气温随海拔变化数据表,并使用WPS表格图表功能研究气温随海拔的变化规律。
在WPS表格中选择数据区域,打开图表向导,选择图表类型。一般来说,趋势数据都选择XY散点图为宜,并选择平滑曲线。原因在于这只是不完整的数据样本,平滑曲线更容易让学生理解采样数据所承载趋势的程度。有了图,引导学生认识此变化趋势便有了依据,不仅可以立刻看出此变化趋势,还可以使用适当的模型来描述。
图1是生成的气温随海拔变化图。
气温与海拔大致呈现线性相关。这幅图的虽然很好的反映出了气温变化趋势,但是缺乏量化的函数无法充分利用此趋势,需要建立具体的公式来描述,这就要使用趋势线的功能。
在已经形成的曲线上单击右键,选择添加趋势线,因为大体已经可以判断是线性,在类型标签中选择线性,并在选项中勾选显示公式和显示R平方值,此时立刻生成一条线性趋势线,还给出了数值化的一次函数。
y=-5.9684x+21.054
利用WPS表格的扩展功能,可以使这个函数和图表传递出更多表格中隐藏的信息(图2):直线斜率为负,表明温度随海拔增高而降低,并且每降低1km,气温下降的幅度约为6℃。若x为零,y=21.054,即当地海平面处气温约为21℃左右。使用趋势预测向前推或者倒推一些单位便得到图3。
R2(方差)的值为0.9984,这说明拟合程度已经相当高了,表明此公式来描述当地温度随海拔高度变化趋势十分合适。
2.人口变化趋势教学
前一个例子的数据变化趋势中蕴含了一些可以推导的地理概念,但是像人口趋势类似的数据本身不具有更多的可推导性,只能作为一种特殊的模型利用数学工具来预测,趋势线同样可以发挥作用。
表2是收集1978年改革开放以来我国的年度人口数据,以此建立适合的数学模型描述它们的变化,并对未来几年的人口做出预测。
同样采用X、Y散点图中的平滑曲线生成图表。通过图表可以看出,人口增长的趋势总体趋于缓和,所以使用线性模型来描述就不合理了,尝试使用多项式来拟合数据。为曲线添加趋势线,在类型中选择多项式首先选择使用2次多项式来拟合,R2值为0.9983,方差已经让人满意了,我们再采用3次多项式来试试看,方差值达到了0.9994,若采用四次多项式方差值可以达到0.9999,几乎可以认为是完全拟合。
最后我们根据得到的模型函数预测2010年的人口总数为13.45亿左右。
对数据进行信息化处理,引导学生利用数据处理软件来挖掘数据背后蕴藏的信息,这样在教学过程中学生面对的就不仅仅是枯燥的数字表格,而是能挖掘其内涵并具有一定探索性的科学学习方式。不仅丰富了地理教学的方式方法,提升了课堂效率,对引导学生数据建模思想的形成也具有积极作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07