
数据分析新方法 你知道多少
对数字营销公司FullFunnel的COO Stephen Barone来说,2016年将会是一个从孤立的、特定客户分析项目向更大众化的大数据收集与分析方法过渡的一年。
“我们现在还属于小数据的范畴,因为特定领域和行业的客户是孤立存在的,”他说,“在我们平时的业务中,几乎没有真正利用到大数据。”
在2016年,Barone的立场可以代表许多和他们情况相似的企业。虽然许多企业在过去几年中推出并完善了基本的数据分析方法,他们之中依然有些人希望在新的一年里调研并使用更为先进的技术。
尽管目前还存在着种种限制,Barone依然确信,通过实现数据分析方法,FullFunnel可以做到更多。他最近聘请了一位有数学和经济学背景的销售分析师,通过该分析师的帮助,他希望对客户有一个更为全面的了解。目前FullFunnel的业务主要集中在入站营销和付费搜索活动。
他使用了DataHero的工具,为客户跟踪这些项目成功与否,本质上相当于回顾报告。但Barone希望回顾信息可以更加系统地识别和分析,以便为客户推荐更为有效的策略。这将是他们在2016年第一季度重点发展的方向。
“我们可以通过分析数据得到更广泛的结论,但我们并没有在这个上面投入更多的时间,”Barone说。
实时分析发展的一年
数字营销和公关公司M Booth and Associates的分析总监Jeff Bodzewski,也希望在2016年专注于更高级的数据分析技术。现在他想发展更多实时分析方面的业务。
M Booth根据客户特征使用数据分析方法来确定受众属性和定制消息。但在过去,他们的重心一直是确保正确的信息交付给正确的受众。2016年Bodzewski和他的团队要确保这些消息能够在最为恰当的时刻交付。
“现在,数据源大量涌入,特别是某个人的位置也能通过移动数据确定,我们也在营销方法中加入了“适时推送”,”Bodzewski说。
为了实现上述方法,Bodzewski计划在更大程度上利用移动数据。这些数据包括移动用户的位置,通过确定受众周围的环境实现消息的精确递送。
认知计算取得进展
毫无疑问,认知计算仍处于初级阶段,但作为一个被人们谈论最多的数据分析方法,2016年企业对它将会越来越感兴趣。Nationwide Insurance首席数据官Wes Hunter表示,他正在研究认知计算技术如何提高业务流程和客户体验。
对他而言,认知计算的潜在用途都是关于简化运营的。事实上,早期阶段认知计算的大部分希望都集中在使用机器来替代或扩充目前人力承担的任务,这些任务包括采集处理大量的数据,并在日常运营中将数据作为一个潜在的工具使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07