
大数据时代的“玻璃地球”
如果地球像玻璃一样透明,我们可以清楚看到地球内部的一切,这将是怎样一幅景象?
“大数据时代,利用信息技术使地质结构和地质过程可视化的‘玻璃地球’计划有望带来地质研究、矿产勘察和工程勘察的巨大变革。”日前,中国地质大学(武汉)地矿信息系统研究所教授吴冲龙接受《中国科学报》记者采访时如是说。
让地球变得透明
使地球表层一定深度“像玻璃一样透明”一直是地质学家们的梦想。目前,业内人士认为,“玻璃地球”是一项基础性的地质信息系统工程,可被看作一种存储在计算机网络上的三维可视化虚拟地壳,该系统提供的地质、地理信息,可供开展地质、资源和环境决策分析。
近年来,世界各国都在各自的“玻璃地球”计划中开展了诸多工作。2001年,澳大利亚政府率先启动“玻璃地球”计划。荷兰、加拿大、英国、法国、德国和美国等多个国家也都将三维地质填图及三维地质模型放在了地质调查工作的核心位置。
对此,吴冲龙评价,尽管世界各国对“玻璃地球”所赋予的含义不同,建设内容也有所侧重,在建设中又面临技术性和体制性的诸多难题和难点,但都取得了一定的进展。
我国也开展了诸多探索性研究。例如,国土资源部和中国地质调查局在2006年和2011年,先后启动了三维城市地质填图试点和三维区域地质填图试点。据了解,这些试点工作围绕增强能源资源保障能力、保障地质环境安全、促进地球科学发展三大主题,开展了大陆地壳、含油气盆地、重要成矿带等综合研究。
地质学需要“大数据”
不少科学家在将地球“透明化”的探索过程中,发现“大数据”这一技术有望为全面掌握和了解地球运动规律提供解决方案。
中科院院士赵鹏大认为,大数据时代地球科学的工作方法包括三个层面。“一是数据的获取和保存;二是数据挖掘和数据分析,包括建模、可视化、管理和服务;三是知识层面,深化对地球系统的认识和理解。”他说。
例如,“数字矿山”便是建立在大数据应用基础上的矿山真实三维空间模型。中国矿业大学环境与测绘学院教授吴立新表示,“数字矿山”为矿山设计、生产作业、安全管理等提供了基础平台和决策支持。
以三维图像的方式呈现“看不见”的地球内部,成为大数据时代地质学家们关注的焦点。“采用可视化的方式进行三维建模,能让地质学家直观地感知和理解地质体、地质现象和地质过程,将有助于发现大型隐伏矿床,也将揭示地质灾害孕育机理。”吴冲龙指出。
中国的“玻璃地球”待建
然而,虽然“玻璃地球”建设与我国“国民经济信息化”和“地质勘察和矿业开发信息化”的战略目标一致。但目前已经建立的三维地质框架模型所承载的信息仍然有限,在资源、环境和灾害预测的实际应用中所体现的价值与所期盼的目标还存在一定距离。
日前,香山科学会议召开了以“中国玻璃地球建设核心技术及发展战略”为主题的讨论会。与会的专家指出,“玻璃地球”概念被提出后,尚缺乏成熟的理论和方法论指导,更缺乏强劲而适用的关键技术支持。
吴冲龙认为:“‘玻璃地球’建设的核心技术是信息技术,其中包括能满足大数据一体化储存与管理的三维地质信息系统技术,能实现地质结构和地质过程快速、动态、精细和全息构建的三维地质建模技术,能支持地质时空大数据分析与挖掘的三维地质信息处理技术等。”
与会专家一致认为,当务之急是应在国家层面开展战略规划和顶层设计,正式启动我国的“玻璃地球”建设计划,协调各部门力量着力开展关键技术研发,保证我国“玻璃地球”建设的健康发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07