
20道问题识别假的数据科学家
雇用数据科学家是不容易的工作,特别是当有一群假的数据科学家在里面装腔作势。这儿有现成的一些问题能够帮助区分真假的数据科学家。
21道必须懂得的关于数据科学的面试问题和答案
如今数据科学家是公认的21世纪最性感的工作,每个人都想分一杯羹。
这就意味着里面会混着一些对大数据装着很懂的人。这些人称自己为数据科学家,但是不具备关于数据方面的能力。
当然他们不是有意去欺骗大家:他们是数据科学家。数据科学本身的崭新性和人们对相关工作内容的不够理解会让他们自己认为因为他们在处理数据,所以他们是数据科学家。
“假的数据科学家经常是很擅长某一特定学科的,然后会坚持他们所在的学科是唯一的真正的数据科学。这个信念没有领会到数据的真正含义,即数据科学是根据科学工具和技术(如:数学方面的,计算机方面的,可视化方面的,分析方面的,统计方面的,经验方面的,还有问题定义,模型建立和验证)完全的应用,然后从数据收集里面获得发现,见识和价值。”
–Kirk Borne ,Booz Allen Hamilton首席数据科学家和Rocket Data Science.org的创办人。
发现假的数据科学家第一个方法是了解你要寻找的人应该具备哪些能力。
明白数据科学家,数据分析师,数据工程师之间的不同是很重要的,特别是在如果你计划雇用他们中的一种的时候。
为了帮助大家从假(或误以为)的数据科学家中找出真的,我们已经准备了20道面试问题,你可以在面试他们的时候采用。
1.解释什么是规则化,为什么它是有用的。
2.你最欣赏哪个数据科学家,是哪个创业企业的。
3.你如何通过多次回归,验证你所创建的模型生成的关于数量结果的预测模型是可变的。
4.解释什么是查全率,它们和ROC 曲线的关系。
5.你如何证实你带到算法里面的一个改进是有意义的,但是没有起到作用。
6.造成分析的根源是什么?
7.你熟悉定价优化,价格弹性,存货管理和竞争智能吗?请举例。
8.什么是检验效能?
9.解释什么是重抽样方法,为什么有用?它们的局限性在哪里。
10.存在很多的假阳性是不是更好,或者许多假阴性呢。请解释。
11.什么是选择误差,为什么它很重要以及你如何避免。
12.请举例,你如何使用试验设计回答关于用户行为的问题。
13.数据格式的“长”和“宽”有什么不同。
14.关于某特定领域的全面的真实信息,你通过什么方式决定相关统计数据无论是否发表于文章都是错的,或者被提出用以支持作者的观点也是不对的。
15.解释Edward Tufte关于图表垃圾的概念。
16.你如何检查极端值,如果你发现了一个你将怎么办?
17.极值理论,蒙特卡洛模拟,数理统计,任意使用其中一种理论,你如何正确预测一件罕见事件的发生概率。
18.推荐引擎是什么?它是如何工作的。
19.解释什么是假阳性和假阴性。为什么区分两者很重要。
20.你在使用什么工作进行可视化。你怎么看待Tableau?R?SAS?(关于图表的)。如何在一个表格或者视频里高效的描绘第五维?
“一个真正的数据科学家懂得如何运用数学和统计学,懂得通过合适的试验性设计创建和验证模型。如果拥有了IT技能,却不会统计技能,你就像只懂得举着手术刀的外科医生一样,只懂得如何拿手术刀(却不会做手术)。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07