
DT时代企业如何跑的更快:利用数据和分析实现转型
在过去几年中,CSP(通信服务提供商)对大数据分析能力的关注和投资不断增加。领导者(或者叫领跑者)正在加快步伐,抛开对手,并且获得巨大的业务和竞争优势。通过考察日益增大的绩效差距,我们发现,认为自己属于领跑者的CSP(通信服务提供商)中的23%有三项主要优先任务。
总体来讲,这些优先任务包括:以客户为中心、运营效率和创造收入(见图1)。目前,绝大多数的收益来自于通过以客户为中心的做法而实现的改进,而71%的CSP(通信服务提供商)表示,他们在第一年即实现了分析投资回报。
你是领跑者吗?
根据对于分析和支持分析的技术能力的使用程度,企业可划分为四个群体:
• 领跑者是数据驱动型企业,它们采用深入的分析能力在大多数业务职能部门中推动业务流程;
• 慢跑者主要利用分析能力实现运营的自动化和优化,但没有普遍使用分析能力;
• 参与者处于早期采用阶段,但他们期望在多个业务职能部门中使用分析技术;
• 旁观者也处于早期采用阶段,但他们的计划仅包括在业务职能部门有限使用分析技术。
近四分之一的CSP(通信服务提供商)认为自己属于领跑者,而电信行业中的其他四分之三CSP(通信服务提供商)表现“落后”,并且面临着竞争优势被领跑者夺去的风险。我们的研究表明,领跑者正制定明确的分析战略和能力计划,并且获得充足的投资回报,他们具有三个共同特征(见图3)。在分析成熟度方面落后的CSP可向领导者学习如何缩小绩效差距。
利用数据和分析实现转型
为了进一步提高CSP(通信服务提供商)的能力,他们的分析计划必须注重以下方面:增强客户关系和体验;实现企业的卓越运营;以及创造新的收入来源。
建议1:建立以客户为中心的文化
利用来自结构化和非结构化数据(例如呼叫中心脚本)的行为模式、趋势和评论,客户档案、交互和操作增加有深度的内容。利用外部数据,包括社交媒体和客户生成的文本。
实现从后见之明(描述性和诊断分析)到先见之明(预测性和规范分析)的战略性飞跃。例如,通过执行分析而预测客户流失,或者确定客户接受某种提议的可能性。
向认知计算投资,以执行更先进的分析,并且促进基于上下文的实时客户交流。例如,在多个渠道的对话中使用认知技术改善联系中心体验。
建议2:提高运营效率
将分析嵌入到业务流程中,通过预测结果并允许员工在每种情景下快速且准确地采取行动而自动处理、推动或通知关键业务流程。
利用第三方社交媒体(例如Twitter)丰富内部数据流,创建一组新的企业应用而增强对市场的了解。利用这些信息了解新产品或新服务的问题,并且预测长期趋势。
制定移动战略,允许员工通过移动设备接入企业资产,从而随时随地利用分析能力获得洞察。即时地将智能融合到尽可能多的行动中。
建议3:创造新收入
与您的生态系统交流。全面了解更大范围的生态系统对您意味着什么。评估您能够和希望扮演的角色。使用生态系统与第三方协作创造更多收入。
制定新能力和新业务模式。将您的独特信息转化为有用的数据,允许生态系统合作伙伴构建创新应用。
了解并接受由API引领的经济。以API形式向第三方开放您的独特资产,包括大数据和分析,从而释放额外的业务价值。
案例:采用机器学习提高对客户问题的响应能力
东亚一家CSP(通信服务提供商)希望其呼叫中心操作员快速回答客户的问题,但这需要搜索由,000多条常见问题答案构成的数据库。通过将自然语言处理分析与机器学习技术相结合,公司新的客户问题响应解决方案克服了长期以来的障碍,即为非结构化用户问题创建相关且准确的答案。该解决方案帮助CSP提高了服务质量和效率,从而增强了客户满意度。
案例:使用预测分析提高生产力
来自利润和响应速度的压力持续增大,亚太地区一家CSP(通信服务提供商)需要通过一种方式快速且高性价比地追踪其营销业务表现。公司部署了预测分析解决方案,并开发了客户倾向模型,用于追踪客户偏好和身份,以及业务机遇。结果,该CSP(通信服务提供商)通过提高生产力和竞争能力而将净收入增加了10%,业务审查的速度加快了92%,而特定场景报告的速度加快了190倍。
案例:大数据平台即服务
菲律宾CSP PLDT已经投资3000万美元开发了大数据平台,并且计划再向大数据业务投资1亿美元,以帮助企业和政府机构为其目标市场开发更有效的产品、服务和计划。金融服务、物流、零售、招待、医疗和公用事业都是预计将从大数据分析中获益最高的行业- 至少在初期如此。CDA数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02