京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析笔记:留存率分析
最近在做留存分析时,遇到了不少的情况,也经常会有人问我,为什么我的游戏突然次日留存率降了一半。如果留存率是单单作为一个简单的指标的话,那对你价值还是蛮有限的,今天就和大家说说一个case,这是不久前解决掉的问题,相信会帮助不少人。OK,这也将作为留存率分析的第一篇文章,后续在和各位分享。
事件描述
统计发现某三日的次日留存率较之前和之后下降了50%,但是在DAU整体趋势上没有显示的变化。
但是通过查看安装量,用户注册量,发现安装量没有明显的波动,但是用户的注册量骤然增加。下图是系统统计的截图
我们再看一下用户注册量
原因分析
由以上的数据表现来看,初步断定是两种情况:
新开服务器
老玩家刷号
针对第一种情况,我做了以下注册和安装的趋势图
由游戏官网得到了游戏开服的时间表
图中除了1月6日的波峰是由于游戏做了软文投放,刺激了游戏用户增长外,其他的红圆圈(除了1月16日)均是在周末开新服刺激新用户增长的,工作日所开的新服并没有出现波峰,比如1月3日,1月7日,1月9日等等。该游戏在1月18日开设新服,根据刚才的经验,1月18日不会出现较大的波峰,但是从1月18日~20日出现一个较大的波峰。即排除了工作日新开服务器造成的影响。
那么也就是剩下了第二种情况,即老玩家存在刷号的可能性。那接下来,我们需要做两方面的工作:
继续查细分数据,如注册活跃占比,注册安装转化率,玩家单日游戏次数,留存趋势表现数据
继续查找数据有问题期间的运营活动情况,便于问题定位。
这里我们先说第二点,我在该游戏论坛发现了一个活动:
新服开放后,新建帮派在开服后前3日,召集10名玩家加入其帮派,即送帮主大量金币。
由此,基本确定问题出在了此处。不过我们还要从另一层面来看当时所在时期的问题,即从数据层面来看。
单日游戏次数
明显发现18~20日的单日游戏次数增加明显,这是小号增加,刷号的一个征兆,因为刚才我们看到了这个时期的安装量没有增长,只是注册大幅增长。
单次游戏时长
单日游戏时长从一直保持的相对平滑和稳定,但是在18~20日三日,出现了明显的波动,即用户单次游戏的时长不高,即存在大量低级账号。
留存趋势表现
留存率能够我们快速定位问题
是否是某一个新登用户质量的问题;
某一日或几日外部事件导致的留存变化。
如果是用户质量问题,那么该批次用户的新登次日留存率、二日、三日等留存率都会偏低;
如果是外部事件导致的,那么就是不同批次新登用户在某一统计日的留存率会表现的都很低;
我们先来看第一种情况:
次日留存率的前后变化
很明显的发现,次日留存率只是在18~20日三天下滑的很明显,三天之后次日留存率恢复正常水平。
接下来,我们再看看18~20日的留存趋势与21日之后的留存趋势表现
这里我们可以明显的发现,18~20日的留存曲线趋势表现整体上是低于之后的21~23日留存曲线的趋势表现,即18~20日的新增用户质量不高,因为大量是老用户刷新号登录造成数据增长,这样的用户实际上活跃度是有限的,即为了得到利益,使用小号作弊获得奖励的行为,而在数据层面的表现是很难看的。
换句话来说,这是运营活动设计的有问题,间接的影响了各项数据的表现。
至于第二种情况,这里就不说了,后续的文章中,会说到这个问题。
总结
这里就很简单了,留存率的分析绝对不是孤立的,也不是就看看可以了,驾驭留存率分析,能够帮助我们解决很多运营的问题,比如今天讨论的因为运营活动设置的比较事务导致数据的下滑,或者因为外部事件的干扰造成了数据的下滑。单一的留存率指标其实意义不大,但是综合利用其他指标,组合定位、分析问题,就显示出了它的作用。在后的关于留存率的文章中,会继续的来说,如何进行留存率的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29