京公网安备 11010802034615号
经营许可证编号:京B2-20210330
注意:大数据分析系统应该规避的问题
在刚刚过去的四月份里,我们51CTO传媒在京举办了《2013大数据全球技术峰会》,相信关注大数据、关注51CTO的朋友们,在这次大规模的技术盛宴里,更多地了解了大数据的奥秘。如果没有赶上参加这场峰会的朋友,也不要心急,因为有关此次峰会概况的的视频已经出炉,感兴趣的网友可以去我们的官网查看相关信息。本次峰会我们邀请了30多位来自国内外的资深技术专家,能和这些专家近距离接触,面对面交流,小编深感荣幸。为了深入挖掘大数据分析系统这方面信息,小编力邀到了某上市互联网公司高级工程师马先生,来共同探讨了这一话题。
(图片来自百度)
大数据分析前期要做的事
其实,每一个数据都有一个ETL,就是抽取、转化,然后去加载,包括做数据的清洗。如果数据大批量进来的话,有些数据可能是有问题的,马先生举了个例子:比如说,好多地址会写得比较模糊,如果要搜索北京这个词的时候,数据仓库里可能只有一个京字,这些都要统一整理成一个,比如说北京,这样后面分析就会简单,比如山东,有人会输入“鲁”字来进行搜索,而不是山东,这就需要在大数据分析前期做好数据清理工作,做规范化,这样后面的数据分析起来就方便很多。
搭建大数据分析系统的注意事项
在搭建大数据分析系统时,有哪些需要注意的事项?马老师提到:首先要弄明白你所在企业需要什么样的数据,或者你想得到什么价值,想明白了再去做。因为做数据不像做别的东西,一定明确知道要知道你要干什么,不然这个系统搭的时候会有很多困难,不知道该怎么搭,不知道用什么技术,也不知道数据进去是否在浪费。而目前的情况是:很多企业可能会先把架构搭出来,实际上这数据每天在算,但是不知道这数据带来什么价值,所以更多是一个业务驱动的。再举个例子:比如说中国移动就想挖一挖,到底是哪一个用户老欠费,哪一个用户用得多,用的多的就给他优惠多一点……如果他有这个需求,你再把这个需求下转给下面的人,按照这个需求去开发;
其次,需要选择适当的技术。比如说你一台机器够用的,不要用两台机器,能够进来报表就不要用交互报表,因为那个都是有技术成本的,并且上线的速度会慢很多。所以建议任何一个企业在搭建数据分析以前,要特别清晰地知道其搭建的需求和目的,选择什么方案,搭它来解决什么问题,针对需求你去做一个数据分析;
再次,在没有时时性要求时,你不要自作主张,向老大提这个。因为大公司的批量已经做得非常完美了,可能批量已经带来35%的收入增加了,他要再做时时,再增加5%,而你现在什么都没有。如果说先要做时时,或者先要全部搞出来的话,可能要先一步一部把35%做好,把那个批量先做出来,然后再做时时,这样效果会更好。
不要滥搭大数据分析系统
技术这个东西都是相通的,没有一项改进都是说完全是重新造出来的,都是在改的,但是它带来的价值不一样,它带来的人的思考,就跟人从零售店买东西和网商这种不一样,但是技术,零售店也会用一些数据库,网上也可能用,要在这个上面做一些转变。马老师谈到,好多国企(这里就不点名),就是为了上项目去上项目,称自己有海量数据。当问他需要搭建的大数据系统是用来干什么,他们的答案很出乎意料:先给搭起来,先存起来,需要的时候再用,就这种思想。其实这个是没有必要的。
总结
虽然大数据现在炙手可热,大数据分析越来越火爆,很多企业都在试图拥抱大数据技术。但还是应该具体问题具体分析,因为大数据分析系统并非适合所有的企业,一些小型规模的企业在旧系统能满足需求的时候,就不要盲目地去追随潮流,舍弃旧的系统重新搭建,也可能解决了这个小缺口,但是可能会滋生其它更大的问题,这就得不偿失了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01