京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据?我们可能只是在努力实现两百年前拉普拉斯的预言
似乎早在 2000 年伊始,数字革命的发展史就已经可以想见:计算机功能越来越强大,直至实现人工智能;电子通讯的部署越来越发达,直至连接全体人类。而对于经济的影响似乎也是可以预料得到:去物质化、去中介化、可交互性……
然后就有了几项重大的创新:传感器技术的加速发展使各种各样的现实体验得以被测量,而成本则越来越小;智能手机手机崛起,把超级复杂的采集设备在了千千万万人的口袋里,也让人们可以通过一个熟悉的界面去连接操作千千万万的事物;机器学习方面的发展让我们能理解那些目前还不能模型化的现象;大数据预的测功能变得强大。
于是在 2010 年的转折点上,数字革命的中心发起了一场新革命 : 数据革命。而大方向可以从几个简单的趋势里识辨出来:
- 产生数据的成本大大降低了。不管是因为采集器成本的降低,因为人们自发地提供数据,还是因为我们无意中留下了记录。现在整个现实都可以用原始数据来描述,动作也好,直觉印象也好。大体上说,我们看着现实在我们眼前面按下了一个数字指纹,而且这个指纹越来越完整,越来越精确。
- 技术成本的降低助推了技术的普及。十年前,我们手机的计算能力相当于阿波罗 10 号;今天我们手机的计算能力相当于一台 Cray-2,尤其是在组织、房屋、日常品中内置的计算机,倍数级地增长了我们每个人的活动能力。
- 数据相关的基本工具和方法得到了发展,让我们有了新的利用数据的形式:贡献经济、大系统之间的同步、预测分析、反馈经济、实时决策等等。
我们甚至可以打个不太妥当的比方,这场数据革命对我们的作用就像是用生化学改造了生物学一样。过去所有的现象都会有新的意义,另一些现象也会继而引起我们的注意,促使我们去寻求进一步的解释。在我们的生活里出现了新的行为方式、新的道德伦理上的问题。这会是一个全新的时代。
但在我们思考创新的时候,我们总是倾向去贴着我们熟知的东西去思考,所以就常常陷在过去的套路里。在 “大数据” 这个故事的本质,几乎原封不动的还是拉普拉斯(注)宿命论式的畅想:
(注:拉普拉斯是生于 18 世纪末的法国学者,在数学、统计学、物理学、天文学领域均有卓著贡献。)
“有一种智能,在任一瞬间里都能识别所有在移动的力,以及力与力相互之间的状况。最好是能得到足够巨量的数据来分析,用同一种程序既能分析宇宙中最大的天体的运动,也可以分析最轻的院子的运动。没什么是不能确定的,对于这种分析程序来说,未来就像过去一样看得清清楚楚。”
从长远来看,数据革命就像是回归到了这一派的设想里去。关于大数据铺天盖地的报道,背后似乎藏着个看着你的老大哥。但是数据革命的理念不该局限于此,这也是 “量化自我” 的现象对我们来说有意思的原因之一。互联网不再只是个媒介,而是个可以称之为 “动联网” 的空间,让人们来传播内容和服务。作为我们的另一个居住空间,记录和利用我们的生活痕迹。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06