京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据?我们可能只是在努力实现两百年前拉普拉斯的预言
似乎早在 2000 年伊始,数字革命的发展史就已经可以想见:计算机功能越来越强大,直至实现人工智能;电子通讯的部署越来越发达,直至连接全体人类。而对于经济的影响似乎也是可以预料得到:去物质化、去中介化、可交互性……
然后就有了几项重大的创新:传感器技术的加速发展使各种各样的现实体验得以被测量,而成本则越来越小;智能手机手机崛起,把超级复杂的采集设备在了千千万万人的口袋里,也让人们可以通过一个熟悉的界面去连接操作千千万万的事物;机器学习方面的发展让我们能理解那些目前还不能模型化的现象;大数据预的测功能变得强大。
于是在 2010 年的转折点上,数字革命的中心发起了一场新革命 : 数据革命。而大方向可以从几个简单的趋势里识辨出来:
- 产生数据的成本大大降低了。不管是因为采集器成本的降低,因为人们自发地提供数据,还是因为我们无意中留下了记录。现在整个现实都可以用原始数据来描述,动作也好,直觉印象也好。大体上说,我们看着现实在我们眼前面按下了一个数字指纹,而且这个指纹越来越完整,越来越精确。
- 技术成本的降低助推了技术的普及。十年前,我们手机的计算能力相当于阿波罗 10 号;今天我们手机的计算能力相当于一台 Cray-2,尤其是在组织、房屋、日常品中内置的计算机,倍数级地增长了我们每个人的活动能力。
- 数据相关的基本工具和方法得到了发展,让我们有了新的利用数据的形式:贡献经济、大系统之间的同步、预测分析、反馈经济、实时决策等等。
我们甚至可以打个不太妥当的比方,这场数据革命对我们的作用就像是用生化学改造了生物学一样。过去所有的现象都会有新的意义,另一些现象也会继而引起我们的注意,促使我们去寻求进一步的解释。在我们的生活里出现了新的行为方式、新的道德伦理上的问题。这会是一个全新的时代。
但在我们思考创新的时候,我们总是倾向去贴着我们熟知的东西去思考,所以就常常陷在过去的套路里。在 “大数据” 这个故事的本质,几乎原封不动的还是拉普拉斯(注)宿命论式的畅想:
(注:拉普拉斯是生于 18 世纪末的法国学者,在数学、统计学、物理学、天文学领域均有卓著贡献。)
“有一种智能,在任一瞬间里都能识别所有在移动的力,以及力与力相互之间的状况。最好是能得到足够巨量的数据来分析,用同一种程序既能分析宇宙中最大的天体的运动,也可以分析最轻的院子的运动。没什么是不能确定的,对于这种分析程序来说,未来就像过去一样看得清清楚楚。”
从长远来看,数据革命就像是回归到了这一派的设想里去。关于大数据铺天盖地的报道,背后似乎藏着个看着你的老大哥。但是数据革命的理念不该局限于此,这也是 “量化自我” 的现象对我们来说有意思的原因之一。互联网不再只是个媒介,而是个可以称之为 “动联网” 的空间,让人们来传播内容和服务。作为我们的另一个居住空间,记录和利用我们的生活痕迹。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29