
数据分析步骤
学习和应用SPSS软件的过程并不是单纯地学习和应用一种计算机软件的过程。由于SPSS是一种专业性较强的统计软件,因此,学习和应用它时必须要了解和掌握必要的统计学专业知识和数据分析的一般步骤和原则。这样才能避免滥用和误用,不致因引用偏差甚至错误的数据分析结论而做出错误的决策。
1.3.1 数据分析的一般步骤
数据分析一般包括收集数据、加工和整理数据、分析数据3个主要阶段,统计学对此有非常完整和严谨的论述。在数据分析的实践中,用统计学的理论来指导应用是必不可少的,也是极为重要的。数据分析的一般步骤如下。
1.明确数据分析目标
明确数据分析目标是数据分析的出发点。明确数据分析目标就是要明确本次数据分析要研究的主要问题和预期的分析目标等。例如:分析城市和农村储户的储蓄行为是否存在显著差异以及成因;分析某企业的客户群特征,包括其人口特征和消费行为等方面;分析全国高等院校人文社会科学的科研能力;分析中西医结合治疗非典型性肺炎的疗效与单纯西医治疗的疗效是否存在显著差异,等等。只有明确了数据分析的目标,才能正确地制定数据收集方案,即收集哪些数据,采用怎样的方式收集等,进而为数据分析做好准备。
2.正确收集数据
正确收集数据是指从分析目标出发,排除干扰因素,正确收集服务于既定分析目标的数据。正确的数据对于实现数据分析目的将起到关键性的作用。
排除数据中那些与目标不关联的干扰因素是数据收集中的重要环节。数据分析并不仅仅是对数据进行数学建模,收集的数据是否真正符合数据分析的目标,其中是否包含了其他因素的影响,影响程序怎样,应如何剔除这些影响等问题都是数据分析过程中必须注意的重要问题。
3.数据的加工整理
在明确数据分析目标基础上收集到的数据,往往还需要进行必要的加工整理后才能真正用于分析建模。数据的加工整理通常包括数据缺失值处理、数据的分组、基本描述统计量的计算、基本统计图形的绘制、数据取值的转换、数据的正态化处理等,它能够帮助人们掌握数据的分布特征,是进一步深入分析和建模的基础。
4.明确统计方法的含义和适用范围
数据加工整理完成后一般就可以进行进一步的数据分析了。分析时应切忌滥用和误用统计分析方法。滥用和误用统计分析方法主要是由于对方法能解决哪类问题、方法适用的前提、方法对数据的要求不清等原因造成的。另外,统计软件的不断普及和应用中的不求甚解也会加重这种现象。因此,在数据分析中应避免盲目的"拿来主义",否则,得到的分析结论可能会偏差较大甚至发生错误。
另外,选择几种统计分析方法对数据进行探索性的反复分析也是极为重要的。每一种统计分析方法都有自己的特点和局限,因此,一般需要选择几种方法反复印证分析,仅依据一种分析方法的结果就断然下结论是不科学的。
5.读懂分析结果,正确解释分析结果
数据分析的直接结果是统计量和统计参数。正确理解它们的统计含义是一切分析结论的基础,它不仅能帮助人们有效避免毫无根据地随意引用统计数字的错误,同时也是证实分析结论正确性和可信性的依据,而这一切都取决于人们能否正确地把握统计分析方法的核心思想。
另外,将统计量和统计参数与实际问题相结合也是非常重要的。客观地说,统计方法仅仅是一种有用的数据分析工具,它绝不是万能的。统计方法是否能够正确地解决各学科的具体问题不仅取决于应用统计方法或工具的人能否正确地选择统计方法,还取决于他们是否具有深厚的应用背景。只有将各学科的专业知识与统计量和统计参数相结合,才能得出令人满意的分析结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10