京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的隐私:边界正变得暧昧不清
人们重视隐私的保护,但同时也相信未来是一个由数据推动的时代。不过,大数据使用的普及必然会涉及到侵犯隐私的问题,这听起来的确是相互矛盾的事情。
不可否认,大数据是座金矿,通过数据挖掘,人类所表现出的数据整合与控制力量远超以往。但大数据又是把双刃剑,国家和企业因大数据获益的同时,个人隐私保护的话题却变得暧昧不清,也使业内外对隐私保护的争论延绵不绝。
大数据打破宁静
说到个人隐私,有这样一个段子:一个客户打电话订购比萨,客服人员马上报出了他的电话和家庭住址,推荐了他喜欢的口味,报出他最近去图书馆借过什么书,信用卡已经被刷爆,了解他房贷还款金额,知道他丈母娘刚动过心脏搭桥手术,甚至还准确定位出他正在离比萨店20分钟路程的地方骑着一辆摩托车……
分散在各个系统中的海量数据乍一看价值不大,但如果把它们深入整合、挖掘,就能知道一名消费者的性格、爱好以及消费习惯等信息,这些信息对商家非常有价值。但对消费者来说,你的宁静生活却从此被打破。
数据如果是在相同业务范围内使用,没有必要去界定隐私;但业内人士也承认,在大数据交易过程中,用户的隐私存在泄露风险。一旦形成大数据模式,各个系统之间产生的数据就会互联互通,数据被用于他途,用户隐私泄露的可能性就会加大。
直接过滤掉个人信息,是否就能防止信息泄露?有业内人士认为,大数据在涉及交换、分析、挖掘时,个人信息是无法直接过滤的。
此外,不同商家的所谓信息共享也会让你的隐私信息有被整合、挖掘的“危险”。这些个人隐私数据散落在中介、银行、保险、航空公司等机构间,危险性可能不大,但如果被共享之后,又被系统整合、相互印证的话,消费者的个人基本信息,甚至性格、爱好以及生活轨迹等信息将被他人一览无余,很多普通人在他们面前将变成“透明人”。
隐私保护应跟上步伐
大数据系统与传统数据系统不同,区别在于,前者包含了很多外源性数据,这些数据本身存在价值。比如你在淘宝购物创造了一个数据,这个数据对于淘宝而言就是外源性的。当无数外源性的数据整合并被分析之后,便构成了大数据系统。一旦形成大数据模式,各个系统之间产生的数据就会互联互通,从而产生极大价值。因此,传统数据时代的“隐私”与大数据语境下的“隐私”,无论是内涵还是外延,均有极大不同。
一般而言,人们对于隐私的定义是:一种与公共利益、群体利益无关,当事人不愿他人知道或他人不便知道的个人信息。其本身并不涉及公共、群体利益。业界有一种声音认为,随着大数据时代的深入,这个社会对隐私的定义一定会逐渐改变,考虑到技术的发展,眼下认为是隐私的信息,或许几年后就不再敏感。
在监管层面,由于现阶段《民法通则》没有完整的关于“隐私”的概念,国家也无明文规定来规范大数据交易市场,诸如云计算和大数据应用都或多或少在灰色地带游走。
上海杜跃平律师事务所律师杜跃平向《每日经济新闻》记者表示,可以从源头上抓起,即默认禁止状态,未列举的内容默认为不被允许。
美国目前仍在使用的是1970年就通过的《公平信用报告法》(TheFairCreditReportingAct),旨在对大型主机侵犯人们的隐私进行防护。该法案允许信用咨询公司收集个人财务信息,但收集所得信息只能用在三个方面:信用、保险以及就业。
很显然,美国的法律在大数据时代滞后了。我国关于个人隐私的保护,也未跟上大数据技术的发展步伐。
杜跃平指出,许多网站和电子商务平台对用户进行行为习惯分析,然后推送相关商品信息,这本身已涉嫌侵犯用户隐私。解决办法是,网站必须尽告知义务,“网站在采集信息前应告知和征询消费者,消费有权授权或不授权。”即使在授权之后,电商平台也不能将消费者行为信息用于商业用途。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29