
大数据的分岔路:一软到底还是软硬兼施?
在计算机发展史上,先是做硬件的风光,IBM曾经一枝独秀,然后就慢慢不行了;做计算机软件的开始发力,微软独占鳌头,IBM被迫向软转型。
在互联网发展史上,同样先是做硬件的风光,SUN和北电都曾得意一时,然后就慢慢不行了;做网络服务的开始发力,雅虎、谷歌、FACEBOOK先后称霸。在人类社会开始向大数据时代开始迈进的时候,相似的历史进程会不会重演?
大约从08年开始,广义的互联网产业出现了两个相互对立的发展路径。一个是以FACEBOOK为代表,逐渐发展出了以个人为中心,以人际关系为传播动力的WEB2.0平台。另一个是以苹果为代表,逐渐发展出了以个人数据终端为中心,以数据终端间的互动为传播动力的另类WEB 2.0平台。前者可称为软平台,后者可称为硬平台。
无论平台软硬,背后的逻辑是一致的,即通过平台生产,获取,整理,融合,利用尽可能多的网络用户和网络服务商的内容和行为数据,并在此基础上探索全新的商业模式。就软平台而言,迄今为止仍在坚持一软到底的初衷,认为无论人们使用何种硬件数据终端,只要还是用我的软平台,那么数据的汇集仍然会以软平台为中心,硬件厂商还是辛辛苦苦地为我打工。就硬平台而言,至少对产业顶端的几家企业来说,已经不是经典意义上的纯粹硬件制造商,而是集硬件,操作系统,开放平台和应用商店为一体,软硬结合,无缝整合的新型硬平台。
在大数据时代,究竟是一软到底的软平台还是软硬兼施的硬平台能够成为大数据时代的数据汇集点,在激烈竞争和产业整合中最终取胜,现在下结论恐怕为时尚早。
FACEBOOK在推出开放平台的6年间,一直将公司的使命定义为让全世界所有的人互相连接起来。然而,就在用户规模超过12亿,股价大幅飙升的时刻,公司创始人扎克伯格在9月初宣布了重新定义过的新的公司使命:让世界上的一切互相连接起来。这就将过去仅仅发力于人与人的关系,扩展到了人与物,物与物的关系,把潜在的市场规模扩大了千百倍。也就是说,在现实世界中的万事万物正在以极高的速度和加速度生成数据化的存在方式时,FACEBOOK有雄心把这个数据化世界中的一切连接起来,创造新的服务模式和商业模式。要做到这一点,它必须像现在创造出人与人关系数据的产业事实标准一样,创造出人与物,物与物关系数据的产业事实标准。而这在自身不具备自家硬件数据终端和操作系统的情况下,无疑是个巨大的挑战。
由于让FACEBOOK这样的后生小子抢了软平台的先机,业界几家传统老大只好半自觉半无奈地走上了软硬兼施的硬平台之路。谷歌以搜索生态圈和安卓操作系统为核心,同时向手机、平板电脑、眼镜、手表、汽车、卫星和高速宽带等五花八门的数据终端和系统全面出击,希望以量取胜,成为大数据时代的事实标准。苹果在确立了软硬兼施的路径之后,近年来竟然无所作为,将乔布斯拼命夺来的历史先机付之东流,与谷歌竞争已落下风。微软在长达近十年的踌躇不前,欲进还退后,终于出手收购了诺基亚,完成了谷歌,苹果,微软三国演义的产业格局。三家之间能否达成数据共享或数据交换协议,甚至形成共同的数据标准,是硬平台能否战胜软平台的关键。否则,任何单独一家都无法与FACEBOOK抗衡。
这场即将决定产业今后十数年走向的决战正在这四家市值过千亿美元,用户过十亿,全球为市场的巨头之间进行。这场决战完全与中国网络业无关,我们仍然在模仿者和跟随者的道路上洋洋自得地行走着。迄今为止,中国尚未出现一家居市场领先地位的软平台,虽然特殊国情为此提供了相当的机会。最有机会进化为软平台的当属微信,不过要看腾讯有无这样的决心,试金石就是它有无勇气尽快将自家的种种服务和产品整合到微信生态圈内,并将微信平台建成,同时全方位开放。微博有成为软平台的一线希望,但新浪的DNA决定了它无法承担如此挑战,除非做出全面的内部调整。百度和阿里具备一定的资质与能力,但它们好像志不在此,仍然停留在自家垂直领域深耕不止。
至于那些做手机、做盒子、做电视等硬件数据终端的公司,肯定与硬平台建设无关,把这些努力理解为IT制造业新一波可能更准确些,虽然旗帜上的确写着硬件加服务的口号。这些依赖安卓系统为生的东西,最好的结局就是成为谷歌大数据生态圈里的一员,扮演数据提供者的角色。如果未来硬平台战略在大数据时代占了上风,它们有机会在生态圈下游混日子。如果未来软平台战略得势,它们的日子就会很难过了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29