京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的分岔路:一软到底还是软硬兼施?
在计算机发展史上,先是做硬件的风光,IBM曾经一枝独秀,然后就慢慢不行了;做计算机软件的开始发力,微软独占鳌头,IBM被迫向软转型。
在互联网发展史上,同样先是做硬件的风光,SUN和北电都曾得意一时,然后就慢慢不行了;做网络服务的开始发力,雅虎、谷歌、FACEBOOK先后称霸。在人类社会开始向大数据时代开始迈进的时候,相似的历史进程会不会重演?
大约从08年开始,广义的互联网产业出现了两个相互对立的发展路径。一个是以FACEBOOK为代表,逐渐发展出了以个人为中心,以人际关系为传播动力的WEB2.0平台。另一个是以苹果为代表,逐渐发展出了以个人数据终端为中心,以数据终端间的互动为传播动力的另类WEB 2.0平台。前者可称为软平台,后者可称为硬平台。
无论平台软硬,背后的逻辑是一致的,即通过平台生产,获取,整理,融合,利用尽可能多的网络用户和网络服务商的内容和行为数据,并在此基础上探索全新的商业模式。就软平台而言,迄今为止仍在坚持一软到底的初衷,认为无论人们使用何种硬件数据终端,只要还是用我的软平台,那么数据的汇集仍然会以软平台为中心,硬件厂商还是辛辛苦苦地为我打工。就硬平台而言,至少对产业顶端的几家企业来说,已经不是经典意义上的纯粹硬件制造商,而是集硬件,操作系统,开放平台和应用商店为一体,软硬结合,无缝整合的新型硬平台。
在大数据时代,究竟是一软到底的软平台还是软硬兼施的硬平台能够成为大数据时代的数据汇集点,在激烈竞争和产业整合中最终取胜,现在下结论恐怕为时尚早。
FACEBOOK在推出开放平台的6年间,一直将公司的使命定义为让全世界所有的人互相连接起来。然而,就在用户规模超过12亿,股价大幅飙升的时刻,公司创始人扎克伯格在9月初宣布了重新定义过的新的公司使命:让世界上的一切互相连接起来。这就将过去仅仅发力于人与人的关系,扩展到了人与物,物与物的关系,把潜在的市场规模扩大了千百倍。也就是说,在现实世界中的万事万物正在以极高的速度和加速度生成数据化的存在方式时,FACEBOOK有雄心把这个数据化世界中的一切连接起来,创造新的服务模式和商业模式。要做到这一点,它必须像现在创造出人与人关系数据的产业事实标准一样,创造出人与物,物与物关系数据的产业事实标准。而这在自身不具备自家硬件数据终端和操作系统的情况下,无疑是个巨大的挑战。
由于让FACEBOOK这样的后生小子抢了软平台的先机,业界几家传统老大只好半自觉半无奈地走上了软硬兼施的硬平台之路。谷歌以搜索生态圈和安卓操作系统为核心,同时向手机、平板电脑、眼镜、手表、汽车、卫星和高速宽带等五花八门的数据终端和系统全面出击,希望以量取胜,成为大数据时代的事实标准。苹果在确立了软硬兼施的路径之后,近年来竟然无所作为,将乔布斯拼命夺来的历史先机付之东流,与谷歌竞争已落下风。微软在长达近十年的踌躇不前,欲进还退后,终于出手收购了诺基亚,完成了谷歌,苹果,微软三国演义的产业格局。三家之间能否达成数据共享或数据交换协议,甚至形成共同的数据标准,是硬平台能否战胜软平台的关键。否则,任何单独一家都无法与FACEBOOK抗衡。
这场即将决定产业今后十数年走向的决战正在这四家市值过千亿美元,用户过十亿,全球为市场的巨头之间进行。这场决战完全与中国网络业无关,我们仍然在模仿者和跟随者的道路上洋洋自得地行走着。迄今为止,中国尚未出现一家居市场领先地位的软平台,虽然特殊国情为此提供了相当的机会。最有机会进化为软平台的当属微信,不过要看腾讯有无这样的决心,试金石就是它有无勇气尽快将自家的种种服务和产品整合到微信生态圈内,并将微信平台建成,同时全方位开放。微博有成为软平台的一线希望,但新浪的DNA决定了它无法承担如此挑战,除非做出全面的内部调整。百度和阿里具备一定的资质与能力,但它们好像志不在此,仍然停留在自家垂直领域深耕不止。
至于那些做手机、做盒子、做电视等硬件数据终端的公司,肯定与硬平台建设无关,把这些努力理解为IT制造业新一波可能更准确些,虽然旗帜上的确写着硬件加服务的口号。这些依赖安卓系统为生的东西,最好的结局就是成为谷歌大数据生态圈里的一员,扮演数据提供者的角色。如果未来硬平台战略在大数据时代占了上风,它们有机会在生态圈下游混日子。如果未来软平台战略得势,它们的日子就会很难过了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28