
大数据时代-数据分析师的尴尬
这几天和一个圈里的好友聊天,问我怎么来看待现在的工作状态。她也是一个做网游数据分析的分析师,她说一天的工作除了固定的发完每天要做的那部分,似乎剩下的时间就没了什么事可做,最感觉有点后怕的是,作为一个leader,下面一群人还需要指点和安排。这种空洞让她有些不能心安。
事实上,我有很长的一段时间也是这种状态,最后练就的本事时每天的必须工作只需要半小时就搞定了,剩下7个多小时就闲着了,闲的心里面有点害怕,因为怕这种闲。而造成这种感觉其实有时候感觉自己是在浪费自己的青春和时间,想努力抓住一些东西,但是又无法抓住。网游数据分析师说来这个词曝光率都不是很高,上有数据挖掘工程师的大帽子,之后又是业务分析师,运营团队的人,又是研发策划的人压着,其实有时候感觉挺苦逼的,挺悲催的地位,外加上环境和目前的分为并没有看重这个行业进步和发展,也就这样了。
现在几乎每天看到Big Data,数据分析这些热词,说实话我对于hadoop,mapreduce 这些不是很关心,因为我不是一个要去做技术的人,我对于经济学,心理学,营销学也不是很关心,因为我也不是一个要去做管理的,纯粹的运营的人,我有自己一个独立的称号网游数据分析师。
也许这个职位的价值不被数据挖掘工程师认可,因为你的技术没他们好,连个算法都搞不懂;
也许这个职位的价值不被运营人员所认可,因为你的分析和知识他们就能做到,连业务都没吃透;
也许这个职位的价值不被研发的人所认可,因为你根本就不懂研发,狗屁不是。
但是为什么还要坚持呢?因为存在价值。
因此就不必怀疑自己自己的价值,如果你热爱这份职业。
一个网游数据分析师不该停留在那些指标上,侃侃而谈就ok了,我们要去吃透那些指标,我们要去理解业务,驾驭上层的数据。同时,我们却又要不断的去探究为什么,因为数据挖掘工程师不会告诉你为什么,他们只能告诉你what,而你作为一个数据分析师,在业务者与挖掘者之间,就要解决,最终服务于运营业务的how。
所以我们可以不懂得高深的算法,但我们要懂得如何将算法应用,如何驾驭那些软件。我们不懂得市场,但是我们要懂得一点长尾,懂得一点怪诞心理,懂得一点社会性。我们不懂得设计,但是我们懂得一点用户体验,购买决策。
其实思考了很久,我觉得作为一个数据分析师,最终就是在构建个非常完整和健康的CRM。基本上层和底层的数据构建和服务对象都是CRM,只是这个东西从未完整和很好的应用过。在这点上,前几天我听过有人说我们做出来的游戏是要我们自己完全能够掌握和把控的产品,不然就会很危险,这点我不怀疑,但是最终的问题是你的产品是要给玩家来玩的,你懂得你的玩家吗?作为业务者只给你一堆指标就能够看出玩家的变化和行为的了吗?作为挖掘者,得出特征,就能直接指导设计改进了吗?我想都不太现实,这都是需要协作和融合的。
无论是细分数据和还是宏观的数据指标控制,都是相互依赖和分析并存的,因此作为数据分析师不只是懂得业务,也会去尽量懂得挖掘数据,这只是一个基本的要求,此外还要有如下的要求:
运营人员和团队不见得关心神经网络,但是你要去关心;
最后我想举一个例子,前段时间看过一篇介绍分析永恒之塔流失的文章,作者在最后说尽管他们成功预测了流失概率,但是仍旧找不到流失的原因何在,也不知道该去如何控制改进。这个问题上挖掘者已经做到了,但是业务层包括研发层还是不能找到问题,你觉得这个问题该谁去解决?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09