
用大数据服务民生 建城乡社会公共服务信息平台
在互联网、云计算等信息技术结合而成的“大数据时代”,我国经济进入创新驱动发展的新常态。采集、整理和开发数据的创新能力,成为信息时代重要的生产要素。信息技术在推动经济社会发展的同时,也正深刻改变着人们的生产生活,影响着人们的思维行为习惯以及社会公共服务管理领域的各个方面。今年,国务院办公厅印发《2015年政府信息公开工作要点》,涉及高速收费,“上网慢、上网贵”,看病难、看病贵等诸多民生领域,既表明了政府对大数据应用的重视,又突出政府的民生服务理念。从全局和战略的高度加快大数据建设,运用大数据手段改革公共服务管理模式,打破部门数据的条块分割,促进数据信息平台的大融合,既是经济转型升级的迫切需要,也是优化公共服务、提高政府行政效能,进一步提升公共服务管理水平,创新社会治理体制、建设服务型政府的难得历史机遇。
第一,树立“大数据”意识,更新公共服务管理理念
。当前,数据日益成为帮助人们认识世界、找出问题、想出办法的基本来源,不断积累的大数据包含着深度知识和价值。“大数据”所展现出的精确分析、相关作用、统合集成等鲜明特点,也给社会公共服务管理带来了一场新的革命。一方面,政府应积极适应大数据时代的发展要求,运用大数据集成思维,积极更新公共服务管理理念,推行信息化服务,不断提高公共服务管理水平。另一方面,各级民政部门要实现保障基本民生、提供社会服务、加强基层治理等具体职能,就应适应国内外信息化发展大趋势,积极探索信息化条件下服务群众的新方法、新途径,更新信息化发展理念,充分借鉴、运用“大数据”的新理念、新技术,采集、分析、运用各类社会数据信息,全面推进管理服务人性化。
第二,提高服务工作效能,推进民政专业化建设
。民政工作直接关系着人民群众的切身利益和社会大局的稳定,当前,相当一部分基层政府的数据采集、计算、存储和查询调用,仍用传统、落后的方式进行,难以适应大数据的发展需求,亟待改进和加强。首先,要明确服务方向,强化服务措施。政府要从大数据的角度,深入开展综合化、信息化服务管理改革,将居民家庭经济状况、健康指数、养老服务需求等一系列民生社会问题,梳理成一项项综合数据,形成大综合、大服务、大管理格局,通过建立城乡社会公共服务信息平台,综合提升社会管理服务能力。其次,要逐步建设好信息化基础设施。各级政府应抓紧完善大数据急需的基础建设,比如计算机的更替、技术人员提升及大数据运行规则制定等方面的建设,实现政府服务信息化基础建设的一个大飞跃。此外,还要推进管理服务机制的制度化建设,大力推进民政工作专业化建设,提升社会服务的专业化水准。
第三,推行大数据信息公开,引导社会参与共建共享
。《2015年政府信息公开工作要点》紧紧围绕党和政府中心工作以及公众关切,已对今年政府信息公开工作细致地作出部署。需要我们从国家层面统筹规划,尽快着手制定全国统一的政府开放数据标准,加大信息公开惠民政策的落实力度,注重多方参与合作,提升综合服务能力水平,充分发挥政府数据信息对人民群众生产、生活和经济社会活动的服务作用。
第四,促进大数据技术创新,积极发掘民生价值
。大数据在带来巨大技术挑战的同时,也带来巨大的技术创新与商业机遇。一方面,要加大大数据产业的政策资金扶持力度。要增加政策信息透明度,促进大数据工程和学术紧密结合,加大技术资金扶持力度,建设公共服务平台,鼓励发展云计算与大数据通用基础软件、移动互联网应用软件等产品的企业,大力发展面向信息技术产业的公共服务。另一方面,要加快培养大数据技术人才,鼓励大数据产业人才创业。以大数据领域研发和产业化项目为载体,不断深化行政服务管理创新,加快培训创新型技术人才和应用型大数据技术人才,加快大数据分析能力和利用能力平台建设。
第五,加强监管与法治,保障大数据合理应用
。大数据属于网络和信息范畴,在给互联网行业乃至国家甚至全世界带来变革性影响的同时,诸多社会问题也随之而来。在这一过程中,既要强化合理监管,还要循序渐进地加强大数据领域法制建设。只有加强监管与渐进式的大数据领域法制建设,才能保障大数据合理应用于改革公共服务管理,推进大数据服务民生的战略才有可能得以顺利实施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13