京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据服务民生 建城乡社会公共服务信息平台
在互联网、云计算等信息技术结合而成的“大数据时代”,我国经济进入创新驱动发展的新常态。采集、整理和开发数据的创新能力,成为信息时代重要的生产要素。信息技术在推动经济社会发展的同时,也正深刻改变着人们的生产生活,影响着人们的思维行为习惯以及社会公共服务管理领域的各个方面。今年,国务院办公厅印发《2015年政府信息公开工作要点》,涉及高速收费,“上网慢、上网贵”,看病难、看病贵等诸多民生领域,既表明了政府对大数据应用的重视,又突出政府的民生服务理念。从全局和战略的高度加快大数据建设,运用大数据手段改革公共服务管理模式,打破部门数据的条块分割,促进数据信息平台的大融合,既是经济转型升级的迫切需要,也是优化公共服务、提高政府行政效能,进一步提升公共服务管理水平,创新社会治理体制、建设服务型政府的难得历史机遇。
第一,树立“大数据”意识,更新公共服务管理理念
。当前,数据日益成为帮助人们认识世界、找出问题、想出办法的基本来源,不断积累的大数据包含着深度知识和价值。“大数据”所展现出的精确分析、相关作用、统合集成等鲜明特点,也给社会公共服务管理带来了一场新的革命。一方面,政府应积极适应大数据时代的发展要求,运用大数据集成思维,积极更新公共服务管理理念,推行信息化服务,不断提高公共服务管理水平。另一方面,各级民政部门要实现保障基本民生、提供社会服务、加强基层治理等具体职能,就应适应国内外信息化发展大趋势,积极探索信息化条件下服务群众的新方法、新途径,更新信息化发展理念,充分借鉴、运用“大数据”的新理念、新技术,采集、分析、运用各类社会数据信息,全面推进管理服务人性化。
第二,提高服务工作效能,推进民政专业化建设
。民政工作直接关系着人民群众的切身利益和社会大局的稳定,当前,相当一部分基层政府的数据采集、计算、存储和查询调用,仍用传统、落后的方式进行,难以适应大数据的发展需求,亟待改进和加强。首先,要明确服务方向,强化服务措施。政府要从大数据的角度,深入开展综合化、信息化服务管理改革,将居民家庭经济状况、健康指数、养老服务需求等一系列民生社会问题,梳理成一项项综合数据,形成大综合、大服务、大管理格局,通过建立城乡社会公共服务信息平台,综合提升社会管理服务能力。其次,要逐步建设好信息化基础设施。各级政府应抓紧完善大数据急需的基础建设,比如计算机的更替、技术人员提升及大数据运行规则制定等方面的建设,实现政府服务信息化基础建设的一个大飞跃。此外,还要推进管理服务机制的制度化建设,大力推进民政工作专业化建设,提升社会服务的专业化水准。
第三,推行大数据信息公开,引导社会参与共建共享
。《2015年政府信息公开工作要点》紧紧围绕党和政府中心工作以及公众关切,已对今年政府信息公开工作细致地作出部署。需要我们从国家层面统筹规划,尽快着手制定全国统一的政府开放数据标准,加大信息公开惠民政策的落实力度,注重多方参与合作,提升综合服务能力水平,充分发挥政府数据信息对人民群众生产、生活和经济社会活动的服务作用。
第四,促进大数据技术创新,积极发掘民生价值
。大数据在带来巨大技术挑战的同时,也带来巨大的技术创新与商业机遇。一方面,要加大大数据产业的政策资金扶持力度。要增加政策信息透明度,促进大数据工程和学术紧密结合,加大技术资金扶持力度,建设公共服务平台,鼓励发展云计算与大数据通用基础软件、移动互联网应用软件等产品的企业,大力发展面向信息技术产业的公共服务。另一方面,要加快培养大数据技术人才,鼓励大数据产业人才创业。以大数据领域研发和产业化项目为载体,不断深化行政服务管理创新,加快培训创新型技术人才和应用型大数据技术人才,加快大数据分析能力和利用能力平台建设。
第五,加强监管与法治,保障大数据合理应用
。大数据属于网络和信息范畴,在给互联网行业乃至国家甚至全世界带来变革性影响的同时,诸多社会问题也随之而来。在这一过程中,既要强化合理监管,还要循序渐进地加强大数据领域法制建设。只有加强监管与渐进式的大数据领域法制建设,才能保障大数据合理应用于改革公共服务管理,推进大数据服务民生的战略才有可能得以顺利实施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27