
数据分析师主宰者
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
不管你喜不喜欢,你在网络上所做的事情都会留下越来越深的足迹。那些公司拥有关于你和其他数百万潜在顾客的海量数据。他们现在所需的就是一只分析师队伍,让这些数据变便得有意义。
当然,谷歌已经是这方面活生生的例子了。
其领导人已经建立了一个利润达236亿美元的企业——完全是建立在追踪、理解和管理数据的基础上,更精确的说是理解人们如何进行搜索,然后在搜索结果旁附上相应的广告。然而数据的威力还仅仅限于因特网企业。想想看,因为你在生活中留下了越来越深的数字足迹,现在的每一行业都能获得不可思议让人头疼的大量的客户与潜在客户数据。
利用Web,商家能够而且肯定会密切注意你的每次点击,或者至少其中的大部分。而且,越来越多的人正在利用手机订机票、买书或者缴停车费等各种事情,数据挖掘的可能性变得更加丰富了。
数据分析师也是这样。
大大小小的公司预计会雇佣大量的数据分析师。根据劳工统计局所述,这一职业总体上在2018年之前将以45%的速度递增,成为增长速度最快的职业。劳工统计局将这一职业分为几类比如软件与应用程序工程师和计算机系统分析师等,这些都有巨大的机会。数据处理革命正在席卷商业的每一个角落。毕竟,更多的数据能够帮助更好的管理公司运行和供应链。“目前的挑战是利用这些数据更好的理解商业的方方面面”,Varian说。
机会来自大大小小的公司,甚至那些目前还不存在的公司。
让我们来来看看Jeff Tseng,他在2007年中跟合伙人Albert Lai在旧金山创立了Kontagent公司。Kontagent公司完全依赖Facebook和其私人投资者的资助而存活。Tseng和其队伍创造了一系列分析人们在Facebook上行为方式的工具,尤其是注意如何与第三方应用,比如游戏,互动。这些是非常有用的信息,Kontagent已经有了100位顾客订购他们的分析工具,用于分析,例如,那些游戏邀请能够带来注册、为什么会这样等信息。
Tseng和他的队伍进行的是一项很有难度的数据挖掘任务。
考虑下这些数据:Facebook有4亿活跃用户,平均每天在线55分钟 。这对Kontagent意味着什么?“我们每个月收集几十亿条用户数据,“Tseng说,他今年31岁,为了创业从UCLA的电子工程系博士学位退学。”在今后几年,更会增加到数百亿条。”
收集到数据是一件事,利用好它是另外一件事。
这是数字时代每一行业的所面临的挑战。所以除了超人的数学技能,和Tseng一样的人们还需要理解经济和某一特定市场的的精髓。换句话说,这和单纯的数学据计算差的很远。
Kongtangent现在只有九名雇员,但是不要小觑这类小公司未来的工作机会。并不是Kontangent所做的事吸引了Varian和其他经济学家的注意力,而是它将何去何从。
对Varian来说,Kontangent代表一个巨大且重要的劳动力方面的趋势:他所说的“micro-nationalcompanies”的崛起。这是指,由技术的进步,小公司可以便宜的使用不久以前还专属于跨国巨头的计算能力。比如,Kontangent将其所有数据存储在“云”上,从而省去了昂贵的数据中心。它租赁“云”上的数据间并通过web访问,很多新开张的公司都这样做。
向云的迁移还正在从另一方面帮助就业市场。
以EMC为例,这是一家数据存储和数据安全的公司。它正在推动无线和云计算方面的数据保护工作。结果,该公司计划今年大量招聘,将其研发费用提高20%。它在第一季度已经雇佣了800名新员工,并计划在年底前再增加2000人。
Varian认为向云的迁移的重要性不仅仅在于它创造了新的就业机会,还在于他正在改变我们的工作方式。比如,它使得频繁的更改一项大工程更容易还让全球合作成为可能。他说,这最终会成就一个更有效率的社会。按此推断,这会让我们有更多的空闲时间去购物、旅游、做自己的事,然后制造更多的数据。
总结:越来越多的企业将选择数据分析师的专业人士为他们做出科学、合理的分析,以便正确决策项目.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07