
大数据之基于模型的复杂数据多维聚类析(三)
除了聚类,对于这个数据的分析还告诉我们一些隐藏很深的关系。比如在模型中变量Y2和Y3有连线,这表明一个人的背景信息和他对于贪污的容忍程度应该有一定的关联关系。具体地说,在Y2所表示的4类人中,你觉得哪一类是最能容忍贪污,而哪一类是最不能容忍贪污的呢?在模型中,通过对这两个变量的条件概率的分析,我们得到了一个答案,有兴趣的同学可以去论文中验证一下自己的猜测。
相关学术工作
隐树模型在密度估计,近似推理及隐结构发现等方面都有具体的应用。在多维聚类分析的应用上,我们分析过市场学数据(COILChallenge 2000),某地区的社会调查数据(ICAC),NBA篮球运动员比赛统计数据。最近,随着算法的提速,隐树模型开始被尝试用于文本分析,比如对于网页数据,博客数据等的话题分析。隐树模型最开始的提出是为了对中医的证候分析提供统计解释,有兴趣的同学可以参考隐结构模型与中医证研究。
最近两年,多维聚类分析引起了很多机器学习研究人员的兴趣。从2010年开始的MultiClust Workshop已经举办了两届,其中第一届是和KDD2010一起举办,第二届是和ECML/PKDD2011一起举办。而第三届也会与SDM2012一起举办。具体参考文献这儿也不罗列了。
多维聚类分析和基于多视图的学习不应该混淆。多视图学习假设数据的多个视图已知,要求视图之间存在充分性(Sufficiency)和冗余性(Redundancy),通过协同训练等技术,主要提高半监督学习,主动学习的性能。多视图学习中针对聚类这样的无监督任务的研究很少,而且它的目标也是如何提高单一的聚类划分的质量,而不是找到多种划分方法。多视图学习也极少涉及如何发现多个视图,而不是假设他们已知。这方面南京大学周志华教授在今年的中国机器学习及其应用研讨会上提到一些初步研究。实际中,可以考虑先用多维聚类分析找到数据的多个侧面(视图),然后再应用多视图学习的方法。
总结
对于一个复杂数据,比如文本,视频,图像,或者生物实验数据,人们可以从不同的角度去诠释这样的数据。数据分析家们已经有了这样的共识,那就是以前的单维聚类方法不再适合大数据的多样性特征。多维聚类分析通过对单维聚类问题的扩展,为复杂数据提供了一种新的探索性分析的方式。我们通过找到数据的不同侧面,按照这些侧面进行分别聚类,然后把各种聚类结果全部以一种简单的方式呈现给领域专家,由专家决定他认为最合适的聚类方法。这样的工作流程清晰定义数据科学家和领域专家的职能,通过两者的合作,提高数据的聚类结果,并且提升数据的可解释性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14