
大数据之基于模型的复杂数据多维聚类析(二)
在隐树模型中,一个隐变量对应一种数据聚类的方法。隐树模型允许模型中有多个隐变量,所以自然地可以多维同时聚类。在例子模型中,可以按照分析能力或者语言能力对学生聚类,也可以按照智力对学生聚类。在隐树模型中,聚类分析可以通过计算给定学生成绩的后验概率进行判断。所以,利用隐树模型进行多维聚类分析的技术重点就在如何通过观测数据学习一个最优的模型。抽象地说,就是找到能够最好地解释数据的一个生成隐树模型(Generative Latent tree model)。
隐树模型的学习
隐树模型的学习是一个对模型逐步优化的过程,优化的目标函数是一个称为贝叶斯信息准则(Bayes information criterion, 简称BIC) 的函数:
BIC(m|D) = max θ log P(D|m, θ) – d(m)logN/2
BIC准则要求模型与数据尽量紧密地拟合,但其复杂不能过高。所以式中第一项表示拟合程度,而第二项是对于模型复杂度的一个惩罚项。我们的优化过程是一个基于搜索的爬山算法(Hill-Climbing)。以只包含一个隐变量的简单的隐树模型作为搜索的起始模型,在搜索的过程中,逐步引入新的隐变量、增加隐变量的取值个数、或者调整变量之间的连接。这是一个逐步修改模型的过程,在这个过程中,模型与数据的拟合程度不断改进,从而BIC分逐步增加。当模型就变得太复杂时,BIC会不升反降,于是搜索过程停止。
隐树模型的学习是一个非常耗时的过程,主要原因在于对于BIC分数的计算。BIC函数的第一项叫做最大似然函数,在模型包含缺失值或者隐变量时,计算最大似然函数需要调用EM(Expectation-Maximization)算法。尽管我们已经对于限制了模型结构为简单的树状结构,但是在这样的模型上进行EM的计算依然是非常困难。围绕隐树模型的很多工作都是在研究如何对模型学习进行加速的,这儿就不赘述了。
基于隐树模型的多维聚类分析实例
我们以一个真实的数据分析实例来展现多维聚类分析。数据来自某地区的关于贪污的社会调查问卷。通过一些数据预处理,我们的数据(如图所示)包含了1200份的问卷,以及31个问题。比如说C_City表示被访问者对于该地区的贪污普遍性的看法,可以有4个选项,分别是非常普遍,普遍,不普遍,以及非常不普遍。C_Gov和C_Bus分别表示受访者对于该地区政府部门或商业部门的贪污普遍性的看法,同样也有四个选项。Tolerance_C_Gov和Tolerance_C_Bus则分别表示受访者对于该地区的政府部门以及商业部门的贪污的容忍程度,可以选择完全不能容忍,不能容忍,能容忍,完全能容忍。数据表里面的-1表示受访者对该问题的回答缺失。
利用隐树的学习算法,我们从这个数据得到了一个如图所示的模型。叶节点对应问卷问题,即显变量。中间结点,Y0-Y8是从数据中发现的隐变量,括号里面的数字表示这个变量所取的状态个数。我们发现这些隐变量都有一定的意义,比如,Y2和问卷中的Sex,Age,Income,Education这些问题紧密连接,说明Y2应该是表示受访人的人口统计信息。Y3和问卷中的Tolerance_C_Gov和Tolerance_C_Bus紧密联系,说明Y3是反映受访者总体对于贪污的看法。
模型中的每个隐变量表示数据聚类的一种方式。比如,变量Y2有4个值,说明Y2提示数据可以分成四个类。这种聚类主要基于Sex,Age,Income,Education这些人口统计信息相关变量的,所以可以说当我们关注人群的人口统计信息这个侧面时,我们可以根据Y2把人群分成四类。具体地研究这四类的类条件概率(Class-Conditional ProbabilityDistribution)特性,我们进一步发现它们分别代表:低收入的年轻人群,低收入的女性人群,受过高等教育的高收入人群,以及只接受初等教育的一般收入人群。同时,我们看到Y3有3个取值,这说明从人群对于贪污总体看法这个侧面出发,可以把人群分成三类,分别是对于贪污完全不能容忍的人群,对于贪污比较不能容忍的人群,对于贪污可以容忍的人群。同样地,我们的聚类也可以基于其他隐变量所代表的侧面。这样从模型中我们得到了9种聚类的方法,达到了多维同时聚类的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07