京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据之基于模型的复杂数据多维聚类析(一)
随着现实和虚拟世界的数据产生速度越来越迅猛,人们开始关注如何从这些数据中获取信息,知识,以及对于决策的支持。这样的任务通常被称作大数据分析(BigData Analytics)。大数据分析的难点很多,比如,由于海量数据而带来的分析效率瓶颈,使用户不能及时得到分析结果;由于数据源太多而带来的非结构化问题,使传统的数据分析工具不能直接利用。
本文讨论大数据内部关系的复杂性,以及复杂数据所带来的对于聚类分析的挑战。聚类分析的目标是依据数据本身的分布特征(无监督),把整个数据(空间)划分成不同的类。基本的准则是同类的数据应该具有某种的相似性,而异类的数据应该具有某种差异性。现有工作假设在这些数据中存在单一的聚类划分的方法,而聚类目标就是找到这样的一种划分。然而,我们在大数据中所面对的复杂数据是多侧面的,比如在网页数据中既有关于内容的文本属性,也有指向这个网页的链接属性。多侧面数据本身就存在着多种有意义的划分,强制地将数据按照单一的方法聚类,得不到有效的、明确清晰的、可诠释的结果。针对这个问题,多维聚类方法针对数据的不同侧面,得到数据聚类的多种方法,最后让使用者决定需要的聚类划分。
多维聚类的概念
假设我们需要对图中的所有图片进行聚类,可能的聚类方法不止一种:按照图片的内容,我们可以把左边的图片标注成袋鼠,而右边的标注成树;而按照图片风格属性,我们可以把上面的图片称为色彩图,而下面的称为线条图。简而言之,关注数据的不同侧面,有可能得到不同的聚类结果。同时这些聚类结果也都是有意义,可以解释的。
生活中多维聚类的例子很多,比如对于人群的划分,可以按照男女等人口统计学信息划分,也可以按照对于某个事件的看法划分。那么从机器学习的角度如何公式化这样的问题,之后又怎么利用概率统计的方法去解决这样的问题呢?下面我们先给出问题的定义。
如图所示,在聚类分析这样的无监督学习中,输入是一个数据表。表的每一行表示一个数据点,而每一列表示描述这个点的一维属性。大数据的一个重要特征就是维度很高(包含很多列),从而带来的维度灾难(curseof dimensionality)。在聚类分析中,表现为:这些维度可能自然地分成一些组,每组包含一些属性,反应了数据某一侧面(facet)的特征。用户可以根据其中一个侧面的属性,对这个数据进行聚类。比如在右表的数据中,一个学生的数据包含了数学成绩,理综成绩,文综成绩,和语文成绩这些属性。我们可以关注学生的数学和理综成绩,按照理科成绩(分析能力)对学生进行聚类;同时也可以关注学生的文综和语文成绩,按照文科成绩(语言能力)对学生进行聚类。
所以多维聚类的问题定义为:
如何发现数据中包含的多个侧面,即属性的自然分组,针对这些不同侧面进行聚类,从而得到多种聚类方法。
多维聚类分析的工具和原理
贝叶斯网络是一种表示和处理随机变量之间复杂关系的工具。它是通过在随机变量之间加箭头而得到的有向无圈图。箭头表示直接概率依赖关系,具体依赖情况由条件概率分布所定量刻画。出于对计算复杂度的考虑,人们会对贝叶斯网络进行一些限制,在实际中使用一些特殊的网络结构。隐树模型(latent tree model)是一类特殊的贝叶斯网,也称为多层隐类模型(hierarchical latent class model), 是一种树状贝叶斯网, 其中叶节点代表观察到的变量,也称为显变量,其它节点代表数据中没有观察到的变量,也称为隐变量。
图中给出了隐树模型的一个例子。其中,学生的“数学成绩”、“理综成绩”、“语文成绩”和“文综成绩”是显变量,而“智力”、“分析能力”和“语言能力”则是隐变量。从“分析能力”到“数学成绩”有一个箭头, 表示“数学成绩”直接依赖“分析能力”,具体依赖情况由右图中的条件概率表所定量所刻画。表中的内容是说,分析能力低的学生在数学科有0.5的概率不及格、0.4的概率及格、0.1的概率得良,而得优的概率则是0; 等等。模型中的其它箭头代表其它变量之间直接依赖关系,每个箭头都有相应的条件概率分布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27