
SAS可视化分析:助企业释放大数据价值
据Garter预测,到2016年,40%的大型企业将积极地对至少10TB数据进行分析,以找出潜在信息。而以现在的技术而言,从浩如烟海的数据中提取出有价值的信息并非易事,而传统的数据分析技术也无法及时地处理这么大量的数据,这意味着一些企业将不得不着手建立更搞笑的大数据分析系统。
SAS,这个一直专注于商业智能领域的全球最大的软件供应商正致力于改变这一现状。其希望通过将已有经验和创新技术相结合,而为用户推出一整套完整的大数据分析解决方案。在这之前,SAS曾提出过高性能分析解决方案,利用内存计算、库内计算等技术,为用户提供大数据解决方案。
SAS公司日前面向中国市场推出的SAS可视化分析解决方案(SAS Visual Analytics)6.1新版本,可满足规模从大到小的各类型企业对于数据分析的需求。作为SAS高性能分析方案家族中最新一款产品, 其内存分析方面的速度、自助服务功能和高度可视化的界面可为企业提供快速、简单而经济有效的商业洞察,并进行更好的商业决策。
SAS认为,IT厂商必须要为用户提供高价值的解决方案,传统的商业智能解决方案产品都基本上都能满足报表、即席查询、多维分析和警报等需求,就目前而言,SAS认为,大多数企业都具备前面四项分析能力,通过把历史数据汇总产生报表,告诉企业过去发生了什么,但却缺乏对未来的前瞻能力。
但随着用户需求的不断提高,其对于未来的预测需求越来越强烈,统计分析、预报以及优化等正是SAS公司的优势。基于这些先进的商业智能解决方案,使得SAS在国内拥有五大行、太平洋及平安保险、大型制造业等客户,但SAS希望能够将这些产品推广给更多的用户。
此次发布的可视化分析解决方案是SAS的拳头产品之一,通过底层对数据进行分析,然后以图形化方式输出结果,其结果通俗易懂,一改传统分析结果太过复杂,不够直观等缺点。SAS可视化分析的扩展性让各企业可以实现量身定制的数据可视化,或者按照实际需求逐步增加分析功能。其自助服务功能让非数据专家也可以轻松、有效地理解和分析大数据,在自己的数据中找到对业务问题的答案。
用户可以在任何地点通过iPad等移动终端或者网页,生成交互式报表或从移动仪表盘中获取最更新的数据信息,由此更快速更好地做出决策。同时可将企业内部IT部门从不断增加的数据集、临时分析和一次性报表请求中解放出来,把更多精力用于其他项目,更为高效。
SAS可视化分析解决方案的高性能内存分析架构能够快速的完成不同规模的数据分析,让用户能够快速检查所有数据,消除了传统的由IT生成报告的等待时间,几分钟或几秒时间内可以在数十亿行数据中执行分析计算,和呈现可视结果。SAS可视化分析的设计初衷是为解决大数据分析问题,可以低成本地利用行业标准刀片式服务器的扩展性,以及适用于EMC Greenplum和Teradata的数据库系统。目前其根据数据量大小,可应用于不同部门。除了支持各部门硬件平台之外,SAS可视化分析还可添加图形显示选项和特色分析功能,包括预测、多元回归模型选项,多重视觉互动,动态过滤,新可视化方法和更多其它功能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10