京公网安备 11010802034615号
经营许可证编号:京B2-20210330
戴尔:大数据炼金术
戴尔大数据亮相2015中国国际大数据大会
未来的一年,企业级用户将加大在商业智能分析和大数据分析上的投入,如:如何提高批量分析效率、规划大数据分析架构,加速业务模式改变,降低数字经济环境下传统业务模式的风险。
善用大数据CIO体验跑车之速
传统IT环境,资源使用管理效率低,成为高成本中心,再加上IT对业务响应速度慢,无法满足互联网+时代下的业务需求,这就难以实现企业的弹性IT交付。最关键的是传统IT架构格局,还阻碍着新应用的部署。
CIO甚至被嘲讽为“Career is Over”,也就是职业生涯即将结束的含义。
戴尔大中华区企业技术战略架构师许良谋认为,通过IT创造价值,以云计算为核心的新IT环境,IT资源使用管理效率得以优化,实现用户自我选择管理IT服务交付,IT对业务的响应速度提高。
CIO可以释放大量IT资源,实现业务创新和IT创造价值。在新IT环境下,具有前瞻性的CIO以跑车的速度成为“战略架构师”,即“Career is Optimizing”,在公司的战略价值迅速提高。
新IT面向未来的解决方案
新IT的战略是什么?在复杂的IT业务环境下,如何实现高效、经济、安全的大数据应用?
从大数据分析到大数据实践,戴尔用未来就绪的IT战略为用户打造了一套数据管理平台和数据分析平台。
这就意味着,戴尔新IT解决方案让企业将爆炸式增长的数据变成业务核心竞争资源,实现通过IT创造价值,通过IT实现业务突破创新。
戴尔自身实践“炼术成金”
戴尔的大数据技术分析平台是经过戴尔公司自身的实践而成的“炼金术”。大数据的实践在戴尔整个生产、销售、市场等各个业务环节中都得到充份的验证。
首先,戴尔公司早在1994年,就成功通过电子商务模式进入中国市场,不仅开启了IT销售模式的一个新纪元,同时打造了一个卓越供应链标杆企业,实现“零”库存管理。其实大数据的实践早已经在戴尔自身的业务运营中展示了完美的成果。
第二,戴尔开启在中国1.0到4.0的时代,戴尔本身就是一互联网+制造的应用典范!无论从生产流程、业务流程还是到商业模式从容应对各种挑战。戴尔成都工厂实现了年总产值突破千亿元,资本支出下降了 50%,节省了高达96%的能源成本,完成戴尔“中国制造”的重要部署。这背后具备了一套强有力的IT系统的支撑。戴尔大数据解决方案更是在生产线和安全上给予重要的价值,高度自动化生产和数据安全的智能分析。
戴尔第一个内部的“大数据”使用方案,通过电商和生产工厂高度自动化流水线控制和数据安全分析系统,
用ETL来作为我们大数据的仓库的实施,最终实现了加速,通过“大数据”Hadoop技术框架,深化高效数据转移,经验证的技术架构,高度工程化解决方案。
第三,戴尔的精准营销智慧决策和分析系统,用SAP HANA来加速。戴尔自身对精准营销的需求,通过实践将它变成一个蓝图。
①首先对硬件、网络、主机进行优化。②结合客户需求,用软件分析达到精准营销效果,无论从数据备份、数据的灾备,或者做性能优化和分析,形成了一个完整的IT体系生态。
值得一提的是,戴尔大数据在SAP HANA技术蓝图基础上,用内存式RealTime的方式来演示,此项创新应用更是获得2015全球SAP HANA最有创意奖。
第四,大数据炼金术除了为戴尔自身的长久发展带来重要价值外,更帮助很多国内外的企业变数据为企业核心竞争力,通过开放的架构让企业从容应对变化,打造未来就绪的IT。
比如戴尔中国和SAP中国为某石油客户做了一个非常庞大的六个维度的新型拓扑,里面的数据多到可怕:181亿条记录,数据分析量超过60TB容量!其中进行了星形模型设计,包含2个事实表数据,明细数据模型、指标汇总模型,6个维度表数据,编号维表、ID维表、组织维度表、人员姓名、三级单位名称、分公司名称。
原有系统是2小时以上才能计算出结果,且易发生中断,采用戴尔Compellent存储全闪存技术在SAP HANA的新商业智能架构后,单个查询缩短到20秒以内,400并发查询运行缩短到10分钟以内!
如何开始大数据战略第一步?
戴尔中国4.0时代,大数据战略如何进一步落地?为了更有效务实的帮助中国用户踏上大数据实践之旅,不久前戴尔与英特尔正式成立了“戴尔中国大数据联盟创新实验室”,用户可以充分了解大数据的使用方法。戴尔通过大数据联盟实验室给客户提供了很好的平台,客户可以通过免费使用这个平台的各种资源并尝试四大应用。
结语通过自身的实践,戴尔搭建了切实可行的大数据技术架构和分析平台,最终让企业用户在大数据之旅中不迷茫,不断的从大数据里获益,在互联网+时代继续跑赢大势!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27