京公网安备 11010802034615号
经营许可证编号:京B2-20210330
《新版课程标准》提出“数据分析观念”,它是由《课程标准(实验稿)》的“统计观念”转变而来的。这点明了统计的核心是数据分析。
一、如何理解数据分析观念《新版课程标准》在“课程设计思路”部分指出:“在数学教学中,应当注重发展学生的数据分析观念”。《标准》指出数据分析观念主要体现在以下一些方面:
1、了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析作出判断,体会数据中蕴涵着信息;
2、了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;
3、通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律,数据分析是统计的核心。基于此,数据分析观念主要包括三个互相关联的要素。
第一,就是让学生去经历这个数据分析的过程,体会数据中蕴含的信息。
第二,鼓励学生掌握数据分析的方法,根据问题的背景能选择合适的方法。例如,体育课上 11 名男同学 100 米跑的成绩:13 秒 2 17 秒 13 秒 5 15 秒 8 12 秒 17 秒 1 16 秒 7 15 秒 6 17 秒 16 秒 6 16 秒 7。
平均数: 15 秒 6 ,中位数: 16 秒 6
(1)如果选择参加一项比赛,希望有一半的男同学可以参加,选择哪个成绩作为标准?
(2)如果希望确定一个较高的标准,选择哪个成绩作为标准?(答案不唯一)
(3)如果要确定一个标准,你如何确定?为什么?又如,我们根据问题的背景选择合适的统计图。《新版课程标准》指出:“条形统计图有利于直观了解不同高度的学生数及其差异;扇形统计图有利于直观了解不同高度的学生占全班学生的比例及其差异;折线统计图有利于直观了解几年来学生在身高变化的情况,预测未来身高变化趋势。”
如要比较数量之间的数量关系,可用条形统计图;要了解数据的变化情况,则选择折线统计图;要表达部分数据在整个数据中所占的比例情况,则用扇形统计图。如:整理分析全班学生身高的数据,条形统计图有利于直观了解不同高度的学生数及其差异。可以直接看出:我比他高,高多少;他比我高,高多少。折线统计图有利于直观了解几年来学生身高的变化情况,可以预测自己于明年后年的身高。扇形统计图有利于直观了解不同高度的学生占全班学生的比例及其差异,可以判断自己的身高是偏高,还是偏低,还是中等,怎么调节自己的生活方式和饮食习惯等。从统计图表中尽可能地捕捉有用信息,进而做出某些预测,这是统计素养高低的重要体现。有学者把学生对统计图的认识分为三个水平:(1)数据本身的读取,包括用能够得到的信息来回答具体的问题,这些问题图表中有明显的答案;(2) 数据之间的读取,这包括做比较 (例如比较好、最好,最高、最小等) 和对数据进行操作 (例如加减乘除) ;(3) 超越数据本身的读取,包括通过数据来进行推断预测推理,并回答具体的问题。
这三个水平非常清楚地明示了,教学中引导学生积累数据研读经验的三个层次。比如,如在教学“复式折线统计图”时,练习中出示6-12岁男、女生平均身高,第一层次:根据统计图直接回答什么年龄平均身高多少;第二层次,可以引导学生思考数据之间的关系,比如,你现在的身高是多少厘米?与同龄的比,怎么样?第三层次,据此推测,13岁时身高可能是多少?
第三,通过数据分析,让学生感受数据的随机性。
史宁中教授说:“统计与概率领域的教学重点是发展学生的数据分析意识,培养学生的随机观念,难点在于,如何创设恰当的活动,体现随机性以及数据获得、分析、处理进而作出决策的全过程。”要让学生明白,同样的事情,每次收集到的数据可能会是不同的;也要让学生明白,只要有足够的数据就可以从中发现规律。从而对问题做出判断。例如,学生每次摸出球的颜色可能是不一样,但是摸的次数多了,就会发现,摸出红球的次数大于白球的次数。通过这样的实验操作可以让学生明白数据有随机性,就是不确定性,但是在大量重复实验后,又具有一定的稳定性,学会用部分来推断总体。
比如,同学们的上学时间,每天都不相同,今天的上学时间和明天的上学时间之间也没有任何关系。但只要把一段时期内学生的上学时间汇总,就能发现诸多规律,例如最早上学往往比最迟上学的同学早多少时间,90%以上的学生在哪个时间段里上学,低年级学生和高年级学生间上学时间有无区别,等等。很显然,体会数据随机性的过程也就是学生感受统计意义的过程。
二、如何培养学生的数据分析观念
1、创设有效的数据分析活动,使学生感受到数据的作用,形成数据意识。如:统计同学们的身高、体重、生日、爱吃的水果,统计商店里每个月空调的销售情况、一定时间通过十字路口的车辆情况、本地区的用电量、六一开展什么活动等例子,都是和我们生活息息相关的重要的相关数据。这些内容都从不同的方面吸引学生主动开展统计活动,通过对数据的收集整理分析,了解到周围的人和事物的相关信息,体验到统计的价值所在,从小培养统计观念。教师应该根据不同年级的学生设置学生喜欢的数据,从中体会数据蕴涵的信息,感受数据的作用,形成遇到问题能想到收集数据、获取信息的意识。比如:统计“我们最爱吃的水果”,可创设情境:元旦联欢会上,要为同学们准备一些水果,每种水果准备多少比较合适呢?要是知道同学们喜欢吃什么就好了?以此激发学生想到可以通过数据统计知道同学们喜欢吃水果的情况,让学生带着愉快的心情自主投入学习。这实际上就是培养学生的一种数据意识,是小学阶段统计学的最核心的问题,也就是我们不期望学生掌握多少种方法,但是他要有这样的想法,遇到这样的问题能想到去调查、能想到用数据说话。
2、经历真实数据统计分析的全过程,发展学生的数据分析观念。例如,“组织比赛”的情境,同学们在操场上讨论:“组织什么比赛好呢?”“去问一问同学,他们最喜欢什么活动?”这就使学生认识到统计对决策的作用,引起学生进行调查的愿望。教材紧接着安排小调查,“调查你们班的部分同学,他们最喜欢什么活动,在下图中涂一涂。”这就要组织学生收集数据、整理数据。用在方格纸上涂一涂的方式呈现数据。最后安排学生说一说:(1)一共调查了几个同学?喜欢什么比赛的同学最多?喜欢什么比赛的同学最少?(2)喜欢足球的同学比喜欢跳绳的同学多多少个?……(3)如果你们班有一名同学没来,猜一猜他最有可能喜欢什么活动。(4)你认为你们班最好组织什么比赛?(5)根据统计图,你还能提出什么数学问题?
这就是引导学生分析数据,做出合理的决策。上面的例子就是根据低年级儿童的特点,组织学生经历统计活动的全过程,发展学生的数据分析观念。
3、将学生的数据分析观念的培养贯穿在数学课程各个内容教学的始终。在小学阶段,每个年级的教材中都编排了整章节的统计与概率的内容,这是培养数据分析观念的良好载体。其他章节中的内容如“圆周率的求证、质数和合数的认识”等等,都可以通过数据分析来获得。但教学中常常出现的问题是:只在统计与概率教学内容中关注对学生数据分析观念的培养,而在其他课程内容的教学中,并没有有效地利用教学内容,有意识地发展学生的数据分析观念。其实,数学课程各个部分都有利用数据统计分析使学生获得新知的内容。教学中老师要善于把握教学内容,不断应用强化数据分析的方法,发展学生的数据分析观念。
4、开展实践活动,积累数据分析应用的例子,形成解决问题的策略性知识。在教学中,教师要通过实际活动,让学生通过观察和独立思考,对提供的数据进行符合其认识水平的分析和解释,作出一些简单的判断和推理,从而锻炼其提出问题和解决问题的能力,培养其独立思考能力、实践能力和创新精神,进一步体会统计的价值。如完成“同学们每天玩游戏时间”的统计图表后,引导学生交流:从图表中你了解到什么?学生很容易直观地看到玩游戏30分钟以下、30分钟至一小时、一小时以上的人数情况;你想对每天玩游戏一小时以上的同学说什么?关于同学们每天玩游戏和玩游戏时间的长短,你有什么建议?学生可能会告诫玩游戏时间太长的同学要抓紧时间学习,要注意保护视力等,提出一些合理化的建议。这样,学生不仅学到了统计知识,还把统计的意义落到了实处,增强了统计观念。又如,到处可见的“招聘服务员启事”写道“该公司员工的月平均工资2500元”你认为应聘者的月工资一定是这么多吗?
在教学中,还可以让学生收集报纸、杂志、电视中公布的数据,分析它们是否抽样得当,有没有提供数据来源,来源是否可靠等,这样能提高学生分析问题、解决问题的能力,促使学生更好地认识世界,同时理智地对待各种媒体公布的数据,对现实世界中许多事情形成自己的看法。这样,学生不仅学到了统计知识,还把统计的意义落到了实处,增强了统计观念,达到学生数据分析观念的培养目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12