京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,教你怎么用大数据里赚钱!
在大数据时代想赚钱必须会运用大数据,掌握了大数据技术就可以赚到大钱。
当数字营销技术已经普遍得到认同,并且在过去一些年当中日渐成熟,收集和利用数据的迫切希望也开始加快了步伐。
在交际圈和客户体验领域,“数据”已经成为一切跟数字有关的事物的相联系的统称。包括联系方式、交易记录、行为信息,甚至是录像、影像之类的内容。这种现象已经不可避免地导致了对数字价值的滥用和投机。
我们认为数据的价值不在于它的搜集和储存,而应该源于数据分析的过程、基于数据创造深刻的见解,和在这些见解基础上的采取行动。这种价值在当品牌通过改进的商品和服务可以为数据的创造者——顾客提供更好的体验时才会显现。
一般来说,有三个模型可以帮助营销者学会更好地利用数据,更好地优化营销预算,以及驱动市场导向创新。
1.利用模型识别算法改善市场细分
2.通过倾向分析做出精确的预测
3.对顾客信息进行过滤以提出更好的推荐建议
细分模型当算法是用来分析顾客数据集的时候,受众市场细分就变得更加复杂精细。人类只能处理不多的一些的跟消费者细分相关的变量,而计算机软件就不受这个限制。这对于要计算特定顾客群的真正价值来说非常重要。此外,营销者可以很快速地摆脱传统的市场细分模型,这种传统模型通常建立在小范围的基础人口数据点上。它们包括产品细分(人们买或者不买的产品种类、群体)、品牌细分(人们喜欢或不喜欢品牌种类、群体)、行为细分(人们购买频率、在购买点停留时间、与客服接触频率以及降价打折对他们的影响)。
倾向模型
倾向模型可以让你预测单个顾客或细分顾客群在未来的行为表现。假设你掌握了正确的数据,你就有可能用相应算法将某一个消费者与其他消费者进行比较,从而预测出这个消费者将会花费他们生命当中多少的时间来与你的产品共同度过。举个例子,一个很高数额的一次性购买所带来的价值就不如一个数额低但是持续性地购买带来的价值高。在这种情况下,专注于研究后者市场就显得意义非凡。预测客户的参与倾向也是可以的,只要弄清楚某一个特定客户点击你的内容营销或的可能性有多少,或者邮件沟通能够产生多大的效率提高作用。另一个有价值的倾向模型就是可以测量购买的倾向。它会告诉你消费者是不是准备要开始购买行动,它可以帮助你用合适的报价触达目标消费者。这种模型也可以使那些不准备购买的客户呼之欲出,以便于品牌可以用更有竞争力的报价去触及他们。
推荐模型
亚马逊有一个自动推荐的程序,最为著名的就是“买了这个产品的人也购买了......”。运用推荐算法,商家不再局限于向上销售,而是能够提供数据服务以便真正帮助消费者找到他们想要的产品和服务。交叉销售推荐对消费者来说是一个非常有用的功能。不仅仅是推荐同一种产品的其他版本,而是建议消费者购买其他类型的产品,从而达到捆绑销售的目的。这一功能在服装上作用得很好,但同时在其他产业如娱乐产品也可以发挥作用。比如提前购买电影票附带点心,享受快递服务,就是一个很好的例子。“下一步销售”推荐使用的数据支持更加广泛,它是用来向消费者建议她想购买的下一件物品,这个在价值附加服务领域表现尤其突出。比如,如果一家自行车厂商知道某一顾客刚刚更新了他的自行车,他就可以提供一套工具或者配件帮助消费者从购买中得到更多价值。运用以上三种模型,企业可以通过数据挖掘所收集的数据资料的真正价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27