京公网安备 11010802034615号
经营许可证编号:京B2-20210330
他说数据科学家就是做算术的,还说这是件好事
两年前,一项来自LinkedIn的调查结果显示,“统计分析和数据挖掘”是2014年最大的求职法宝。在大数据技术飞速发展的今天,数据科学家成了炙手可热的大红人。
数据科学家是谁?干嘛的?他们好找工作吗?
度娘说,
666的样子啊。不过太严肃了,我都没听懂,and what about you?
还有一种听起来就像人话的多了,
“你擅长数学,会用Python编程,而且还对某个行业了如指掌?如果你拥有这样的技能集,那你就有可能当上数据科学家。”
嗯,“技能集”。技能集?!能吃吗?
是不是对当上数据科学家再不敢奢望,但如果我告诉你,有一些看上去站着说话不腰疼的人说了这样的话,
“ 数据科学家大多只做算术,这是件好事。”
比如这位——在Basecamp(37signals公司旗下一款项目管理软件 )团队工作的Noah。很多时候他被人称为“数据科学家”,但在他自己看来,大部分情况下他只是做做算术,而且他也很喜欢。
这是Noah在过去几周里所做的一些工作,每一项都是为了应对Basecamp在实际业务中面临的问题:
分析来自不同国家用户的对话内容、试用完成度和平均帐单数量 确定人们当人们登录至一个现有帐户时偶然注册Basecamp的比例,以及长期以来这个现象的变化情况 分析和报告一些Basecamp产品的财务业绩 对帐户所有者进行调查并分析 对一项影响Basecamp用户行为特征的AB测试进行分析
在过去的两周里,Noah所做过的最“复杂”的数学是一些有力的分析和重要测试。他工作的大部分是写SQL queries 来获取数据,对数据进行基本的运算(计算差异,百分比等),绘制结果,并写下注释或建议。
注意昂~可没有编码任何算法、构建推荐引擎昂~也没有部署深度学习系统,或是建立一个神经网络昂~
为什么没有?可能因为现在 Basecamp 还不需要那些东西吧。
在繁花似锦的“数据科学”下有个不怎么光彩的小秘密,那就是大多数人谈论的所谓的数据科学,并不是企业实际需要的东西。企业需要的是准确和可操作的信息,来帮助他们决定如何花费他们的时间和资源。通常一个通过机器学习解决业务中小问题的最佳解决方案,往往只需要高质量的数据,以及一个如何使用最简单的方法解决问题的理念。
也行有人会说,Noah描述的价值并不来自“数据科学”,而是“商业智能”或“数据分析”。我没有资格对数据妄下主观定义,但不管你叫它什么 - 它仍然是对那些花费时间从事数据工作的人,最有价值的方式。
在Noah他们那儿,相当多希望进入“数据科学”领域的朋友都给他发来邮件,希望得到一些建议。在这些邮件中不乏这样的问题:
Dear诺亚,我是应该先得到一个硕士学位?还是应该参加一堆Kaggle比赛?
Noah的建议非常简单:兄弟,都不用。你就学习最基础的数学就行了。然后你再知道如何编写基本的SQL查询,了解企业的经营方式,以及想要成功它需要什么。如果你想成为一名对企业有价值的贡献者,就利用你的周末时间真正进入一家小企业“体验生活”,实际工作一把,而不是参加什么数据挖掘竞赛。去与客户交谈,去注意哪些产品畅销,哪些没有。去试着想想推动业务的经济形式,以及你如何能帮助它更得更多的成功。
所以,知道问题是什么才是迈入精英数据科学家梯队的关键一步。但不要那么傻白甜,因为上面说的技能集,该攒还是得攒!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29