
可视化分析:洞见数据的秘诀
大数据技术浪潮为各个产业带来新的机遇。越来越多的企业正在通过云交付模式,将自身对大数据集的存储、计算与分析能力开放给第三方,使数据即服务(Data as a Service)成为影响产业格局的新一代业务模式。
优秀的DaaS产品可根据企业自身的需求,利用标准化的数据资源,帮助企业增加参考数据量并与内部数据进行交叉参考,从而对环境有更好认知,并发掘洞悉。
而可视化的数据分析工具是数据挖掘与分析中重要的组成部分,它能够可视化地提取所有有价值的数据,将数据的各种属性、数据变化以及数据间的关联,更加简单和直观地呈现出来。
提升决策水平 建立数据文化
Gartner发布的《2014年商务智能和分析平台魔力象限》十分看好数据可视化工具,认为它既可以在前端满足业务用户的需求,又可以在后端满足IT工作人员的需求。
数据可视化之所以能如此流行,主要因为人们普遍认为,处理图片的体验要比处理各种行式和列式数据的体验要好得多。数据可视化的另一优点是,更多业务用户可通过它访问和分析数据,这有助于提高决策水平,建立数据文化。
Qlik创新与设计副总裁Donald Farmer曾提出:“当今世界,人们与数据的互动方式正发生着令人欣喜的变革—大家通过工作经验表达自己的不同见解,那些仅靠小团队制定所有决策的情况,已不复存在。决策的制定,正逐渐下放至整个组织中的每个成员,而他们各自的‘微小决策’对于整体的商业成功,愈发重要。对组织而言,若我们能为其更多人提供自助式数据探索工具,帮助他们探索数据、形成并获取见解,我们将获得巨大的潜在收益。”
如果说,2014年的热门词是大数据,那下个流行词即是“可视化”了。然而问题恰恰是太多的可视化应用实际上反而阻碍了更好的决策。其原因正是由于这些应用采用的技术本身,并不适合真正的可视化。究其问题的本质, 在于我们目前使用的可视化方法过分地强调说服力。许多可视化应用减少了显示的信息量, 以使更好地“阐明”其发现的洞察,但是这种方法反而减少了相关的探讨和争论,从而降低了我们探寻真相的能力。
解决这一问题的方案是,远离那些只能提供演讲用或分享用图表的工具,我们应该使用那些真正实现交互和探索的工具,而不应该存在“终端用户”的概念。因为企业组织中的每个人,都可能拥有重要的商业见解。
自助式数据访问服务可促进销售业绩
不久前,由Qlik赞助并发布在经济学人智库上的研究显示:更大的数据访问,更频繁的可视化工具的使用,以及公司高层对于数据的采用,可增加公司的销售业绩。调查还显示,97%的公司表示,如果他们能够通过实时的自助的方式去了解客户和相关数据,这将帮助他们完成相当好的销售业绩。
这项研究,对全球550位销售部门的领导展开了调查,他们均表示销售业绩对于公司的重要性显而易见;80%的公司认为,与其他事情相比,销售管理“很重要”或者“非常重要”。但同时仍有一些公司对于销售管理缺乏信心,只有四分之一的公司表示“擅长”完成销售目标。27%的受访者表示,数据欠缺和品质不高是阻碍其完成销售目标的最大障碍。
数据可视化之所以能如此流行,主要因为人们认为处理图片的体验要比处理各种行式和列式数据的体验要好得多。
这项调研最终得出几个重要的结论,将对企业如何有效洞察数据产生帮助。重要结论包括:
企业重视数据的精确性和整合性。对于销售数据分析软件,53%的公司认为数据的准确性十分重要;38%的公司认为具备整合现有系统能力的分析平台很重要。然而30%的受访公司表示,他们现有的系统不具备这些能力。
销售总监将数据分析呈现给公司高层。有近三分之一“擅长”完成销售目标的公司和19%其他公司表示,他们的高层领导也会使用数据分析软件。
对培训和数据工具进行投资,能够提高销售团队的水平,为企业增加收入。销售总监们希望看到自己能够在收益和市场占有率上,强于竞争对手。42%“擅长”销售的公司和11%其他公司认为,他们在收入增长上应强于竞争对手。
销售总监希望公司员工能够受益于数据分析软件。在所有受访公司中,五分之三的公司(59%)表示,他们的员工有能力利用分析的数据,而对于那些“擅长”销售的公司,比例上升到77%。这些公司均认为,建立员工对于数据分析能力的意识并对其进行最好的培训,是企业成功的一个重要因素。
数据可视化提升供应链管理能力
在供应链领域,大数据分析绝对是最具影响力的新技术。供应链管理的核心是平衡运营效率、客户满意度和质量。现在企业的供应链正变得日益庞大和复杂,来自多个来源的庞大数据使其管理难度增大,从而影响企业的利润和收入。
此外,由于客户需求变化范围大,供应链经理们需要在海量的全新数据源中钻取有效数据的价值,从而实现需求管理和供给执行, 以辅助供应链的决策制定。
SCMWorld提供的《2014年首席供应链官源报告》显示,相较于往年,2014年客户需求波动更大、期望更复杂,且需要贯穿价值链实现更加深入的运营整合。为此,供应链经理们需要全新的视野面对客户的新变化。
新技术可以为供应链带来更大的透明度,但有效的供应链管理,既可以成为一个竞争力的体现,又可能带来风险、成本提高和更差的客户服务。
实现数据可视化的前提是有效整合数据,同步大量来自很多系统和来源的数据,并且易于被决策者使用和做出洞见和决策。如何收集、存储、分析并展示来源多样化的海量数据, 本就不易,还要运营数据作为驱动业务决策的手段,更是难上加难。
挑战是必然存在的,但是显然那些具有创新思维的企业会更有机会。很多企业正通过商业智能平台来通过不同的数据获得更一致的决策,而采用数据可视化平台,可降低商业智能管理带来的复杂性。
数据可视化的主要作用在于使决策的制定更加确定和迅速。现在企业可以运用商业数据可视化工具,满足其供应链多变的需求。
但在选择适合企业自身业务发展的工具时,供应链经理们仍面临诸多具体而复杂的问题:
改变决策制定:人们需要捕获和支持做决定的自然过程,补充提问的能力,从而能够把正确的人和数据整合到一个工作流中,引导出一个快速、自信的决定。
自由操作数据:人们需要快速地搜索、可视化、重新混合和整合数据。为了做决策,商业用户需要自由地发掘和审核数据,而不需要IT部门的帮助。
实时安全地分享数据:为支持数据驱动的决策,用户必须能够安全地分享某一产品、服务、地区或公司的数据。只有享有权限的人,才能够看到所需数据。
协作制定决策:三人中每人单独对同一组数据提出问题,将可能得到三个单独的答案。如果通过协作方式提出问题,则答案将更具有整体性。
针对供应链领域,Qlik提出了面向平台软件的方法,通过Qlik Sense平台即可实现对供应链所有环节的数据可视化,并实现实时安全的数据分享。这个平台将企业内外部的各类数据同步地整合到一个工作流中,用户根据不同的分类选择获取所需要的信息,快速地搜索、可视化、重新混合和整合数据,同时完成工作协作。
Qlik提供的数据可视化工具可以让企业充分利用供应链分析,同步整合和企业内外部的各种数据,可根据不同的分类选择获取所需的数据信息;还可实时对话、分享见解,这种新型协作式的可视化分析,可以帮助企业获得快速的决策和行动。事实上,在商业智能市场中, 没有其他任何一家供应商能够提供,将免费和付费数据通过基于云的数据服务进行整合而成的数据图书馆。这一点,Qlik做到了。
物联网的飞速发展为供应链领域带来了更大规模的数据量,这些数据中蕴含着占据市场先机的竞争力,处理这些数据的人们会更加崇尚可视化,显然处理图片的体验要比处理各种行式和列式数据的体验更佳。通过借助商业化的供应链数据可视化服务,企业则有机会通过预先制定的策略,处理客户的波动需求变化,更好地完成需求管理和供给执行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14