
大数据如何转化为产品
大数据已经如同工业社会的“石油”一样,成为举足轻重的一种资源。庞大数据如何转化为切切实实的产品,发挥其经济效益,创造更大的社会价值,仍然是一个亟待解决的问题。
如今,大数据已经如同工业社会的“石油”一样,成为举足轻重的一种资源。
2014年,国际数据公司(idc)发布的第七份“数字宇宙”研究报告指出,全球数据总量将以每两年翻一番的速度持续增长。2013年到2020年,数据量将增长10倍,从4.42zb增长到44zb。
如此庞大的数据,看上去十分耀眼。但与此同时,庞大数据如何转化为切切实实的产品,发挥其经济效益,创造更大的社会价值,仍然是一个亟待解决的问题。
日前,由国际科技数据委员会(codata)中国全国委员会主办、在兰州召开的2015科学数据大会上,与会专家、企业代表就此问题进行了深入探讨。
经济价值亟待挖掘
目前,中国是全世界第二大数据生产国,仅次于美国。预计在不久的将来,中国将超过美国,成为世界头号数据生产国。但来自各行各业的数据却长期找不到合适的“变现”方式,一直沉睡。
中科院寒旱所所长马巍就坦言,该所科研人员长期在西北地区的寒区旱区进行深入科考和研究,积累了二三十年的科学数据,但很多时候,他们拥有的数据却无法发挥更大价值。或者说,过去大数据的价值在科学研究方面体现得比较多,但是其经济价值长期没有体现。
“大数据只有进行分析处理,深度挖掘后才有价值,否则就不能发挥作用。”中科院院士、模式识别与计算机视觉专家谭铁牛也这样认为。
对于拥有众多数据的企事业单位而言,大量数据也一直在沉淀,却无法开发。
甘肃移动网络部总经理助理亢凯认为,目前,绝大数多的行业、企业都不具备大数据处理能力,因为大数据还有一定的“高门槛”,所以这也导致大数据的价值没有得到充分发挥,导致“数据+”迟迟无法落地。此外,单独一个企业或者一个行业的数据累积起来,并不能产生足够的价值,必须要将不同领域的数据汇集起来,进行融合,才会有足够的价值。
交换产生价值的“践行者”
在众多专家觉得大数据要想成为产品非常困难时,在本次科学数据大会上,也有企业作出了卓有意义的探索。
肖永红,数据堂公司的联合创始人,据他介绍,数据堂已于2014年12月在新三板上市,是国内首家专注于互联网综合数据交易和服务的公司,其他创始人也多有中科院背景。
在肖永红看来,大数据完全可以转化为产品,只要建立在开放共享的基础上。“目前,数据正在成为各行业的关键支撑,是一种刚性需求。未来数据产品有着千亿元乃至万亿元的市场空间。”
如何把数据变成产品?肖永红提供了这样一种思路。任何来自医疗、健康、销量、物流、景点、交通、监控、气候、教育、住房等领域的数据源产生的数据,可以汇集到类似数据银行这样的第三方平台,其他需要大数据的企业就可以来数据银行付费,进行相关数据交易。
“我们的数据来源之一是众包平台,雇佣兼职人员采集数据。比如,我们在网站上发布一个任务,要求网友收集超市的购物小票,上传图片后我们会给网友提供物质奖励,这样我们就获得了很多独家的核心数据。这些来自超市购物的数据,对于零售企业是非常有用的,我们就可以把这些数据销售给他们。”肖永红说。
当然,科研机构、行业协会、政府部门以及网络数据,都是第三方平台可以获得的大数据来源。“得到数据后,我们要进行数据清洗,去掉无用的信息,再进行数据关联等工作,最后为企业提供定制、销售、订阅、应用等多项服务。”肖永红这样表示。
目前,贵州省正在推行的贵阳大数据交易所也在做类似工作,旨在率先推动数据互联共享方面的探索,将会带动大数据清洗、挖掘和应用等相关产业发展。“拥有数据的用户,完全可以把数据提供给我们这个平台,再由有需要的企业进行采购,这样就能形成产品。”贵阳大数据交易所相关人员表示。
继续政策引导和制度设计
无论如何,让大数据走向市场,真正形成产品,是大势所趋。尽管目前类似数据堂、贵阳大数据交易所这些第三方平台正在涌现,但专家认为,仍然有很多问题需要解决。
“举个最简单的例子,我有大量数据,也愿意交给第三方平台进行交易,但我是不是应该得到一定报酬?这个费用如何计算?这个问题需要解决。”一位不愿透露姓名的专家这样表示。
对此,肖永红及贵阳大数据交易所相关人员均认为,大数据的价值最终应该交由市场来决定,要看有数据需求的企业愿意出多少费用,具体需要双方协商。
“作为有数据需求的企业,他们肯定是愿意付费购买数据产品的。这一点毋庸置疑。”亢凯表示,大数据的发展就是投资驱动的过程,相关利益分配机制也需要探索建立。
中科院寒旱所寒区旱区科学数据中心副主任张耀南则表示,大数据产品的价值,应当由相关的产业联盟来承接数据转化成产品的过程,需要“政府的推手”。
此外,数据的开放与共享问题,也是大数据变成产品过程中不可忽视的一环。肖永红表示,大数据的产品化,只有进一步加大开放与共享才能加速,“我的意见是,开放、共享是大数据变成产品的最大动力,先开放数据,其他问题可以慢慢解决”。
专家们还认为,在加速大数据变成产品的过程中,急需政府提供政策引导和相关制度(比如利益分配机制)的设计,制定相关的大数据标准。
“大数据时代才刚刚开始,政府必须抱着真正开放的心态,对大数据产业、产品的管理和引导要由宽到紧,先推动其发展起来。”亢凯最后表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28