
大数据时代的院校模式创新
时代不断的变迁,高等教育都会在其中留下自己的发展轨迹。身处信息化社会的当下,高等学校自身在教育教学、科学研究、人才培养等方面产生了越来越多的数据信息,其总量正以成倍的速度发展。随着时间的推移,数据信息总量的变化最终会导致数据信息形态的变化——量变引发质变,跨入大数据时代。与此相应,“数据驱动决策”成为大数据背景下提高院校决策绩效的一个新视角。
所谓大数据,是指以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。
大数据的核心就在于对隐藏在数据中的趋势进行有效预测。这种预测将能影响和改变我们决策的传统模式。大数据的精髓在于为我们分析信息时提供了三个重要转变,这些转变将改变我们理解和组建社会的方法。
首先,在大数据时代,随着软件和硬件的不断升级,我们有了分析更多数据的可能手段和条件,甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机抽样,即“样本等于总体”。其次,在大数据时代,我们不再热衷于追求精确度。拥有了大数据,我们不再需要对一个现象刨根究底,只要掌握大体的发展方向即可。尤其对于决策而言,宏观层面的意义远大于微观层面,适当忽略微观层面上的精确度会让我们在宏观层面拥有更好的洞察力。第三,决策的目的是寻求答案,而不是寻找原因。即我们不再热衷于寻找因果关系,转而关注事物之间的相关关系,这会给我们提供非常新颖且有价值的观点。大数据时代是建立在量化一切的基础上的,大数据告诉我们“是什么”而不是“为什么”。
由于院校决策所涉及内涵的广泛性和决策者组成的复杂性,其决策模式的多元化不言而喻。有研究者将传统的院校决策模式总结为四种:依靠决策者所具有的理性认知能力制定决策的“官僚主义”模式;通过“合意”的过程来平衡大学内多方群体利益的“学院型”模式;通过“扩散”程序表达不同权力集团、利益群体诉求的“政治型”模式;决策程序无章可循、随意性大的“有组织的无政府型”模式。这些模式的共同弱点在于缺少有力的决策支持依据,管理者实际上仅仅是以“有限理性”为基础,努力作出“足够好”的决策而已。
大数据背景下的院校决策可以为大学决策者提供和完善他们认知经验所缺乏的信息、知识和智慧,有学者将其称为以数据系统为支撑的“知会理性”决策模式。通过这一模式完成院校决策的过程如下:首先是确定决策目标。在通常情况下,大学董事会、各种委员会、校级领导、职能部门等需要制定政策或者寻求解决重大问题的方案时,会提出一系列与决策有关的问题。第二步是收集相关的数据。在了解了信息需求之后,开始收集相关信息的数据。同时还有大量外部与学校相关的数据信息,建立大数据库,这些数据与内部数据结合,为数据挖掘提供了庞大的资源。第三步是建立数据模型,进行数据分析。在这个过程中,非常重要的是如何建立有效的数据模型,将数据的整合和分析过程以及分析结果与决策问题和大学的背景联系起来。第四步是展示信息。信息分析完成后,大数据信息报告包含需要向决策者汇报信息、解释结果,并且在全校公开,其目的是进一步检验数据的来源与可靠性。第五步是决策。在大数据信息分析得出的结论之后,决策者将作出科学决策。
事实上,在大数据时代背景下,实现上述决策过程所需要的“硬件”(计算机及网络技术、智能系统建设)已经不是难题,最关键的障碍在于院校决策理念的转变及院校研究开展的程度:院校决策的民主程度;大学领导能否将这项工作纳入优先发展项目之列;院校研究是否真正介入院校决策过程;职能部门数据是否全面及为决策分享数据的态度;决策模型的有效性等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10