
执法部门是如何运用大数据的?
随着大数据的发展,大数据以应用的很多领域,执法部门是如何运用大数据的?
日益增长的安全威胁,以及预算缩减给全球范围的执法机构施加了巨大压力,使得他们不得不提高他们利用有限资源的效率。所以那么多机构都开始使用大数据,因为大数据可以帮助他们解决各自社区紧急问题。
在进行研究大数据分析的强大之前,了解清楚大数据的有关信息至关重要。
什么是大数据?
简单来说,就是不同资源数据的采集分析,旨在不同的数据集中识别出有意义的模式。换句话说,采集分析来自传感器、手机数据、社交媒体和互联网这些不同角度的数据可以进一步了解一个人或者搞清一个问题。关键是要核对不同的数据格式并找出你需要的,其中包括结构化数据和非结构化数据。
既然你已经有了一个基本的了解,现在就一起来探讨一些用来提高执法机构工作效率的大数据应用程序吧。
执法分析
执法分析(LEA)是一组基于大数据原则的系统,并给执法机构工作人员提供可操作信息。这些系统联合所有的现有信息,把看似无关的数据建立起关系并通过仪表盘和屏幕用简单的格式呈现出来,这样就方便了执法部门人员行事。最重要的是,执法人员不用再靠复杂的系统来获取需要的信息,这既节约了时间也提高了效率。
预测分析
执法部门人员如何在不增加成本的情况下,有效减少犯罪?
通过劝说大家不要破坏法律?还是给罪犯更严厉的处罚?亦或是采购更猛的武器炸弹?
必然不是!
而是提前预测出犯罪。
这正是基于大数据的预测分析系统。该系统联合了来自各种资源的数据,并用复杂的算法来预测下次犯罪的种类和犯罪地点。这些信息有利于执法人员及时到达犯罪现场并有效阻止犯罪的发生。这种系统节省了时间及其他成本,执法机构也因此可以避免进行无效的追逐,同时预防犯罪。
洛杉矶警察局用PredPol软件就是个很好的例子。该软件使用了地点、时间和犯罪性质这三个数据点来预测犯罪的发生时间和地点。这个软件的确起到了作用,从2013年1月到2014年1月,洛杉矶警察局的山麓部门就发现犯罪率下降了20%,更意外的是,2014年2月13日破天荒成了零犯罪日。
实施条例
警察花费许多时间来检查药物利用指数、安全带和车速以减少交通事故的发生。尽管有这些努力,交通意外的发生数量依旧在上升,因为现有的工作人数不足以巡逻所有的高速违规。
这也是为什么许多执法部门比如田纳西州公路巡逻队开始使用大数据系统的原因。
由IBM公司发明的交通事故系统通过识别药物利用指数和地点、时间、天气情况以及其他相关因素来预测将发生的事件。基于这个系统,田纳西州公路巡逻队只需要集中于意外高发的地段和时间,即可减少交通事故,同时得益于这个系统,该州2014这一年成为1963年以来发生交通事故率最少的一年。
情报共享
传统上来说,数据被孤立在不同的部门,任何部门需要信息都必须要通过复杂的程序才能得到。这样低效率的分享也影响了各部门的办事效率。可喜的是,大数据已经改变了这种不合理的方式,如今大数据存在于不同的部门中,汇集分析起来也非常方便。因此,情报工作可以做的更精确,并且通过鼠标点击就可以在不同的执法机构之间共享。
总的来说,以上的应用程序暂且还不能替代执法机构人员来工作,但它们却是能够有效打击犯罪的强大工具,同时也能帮助各部门充分利用起手头现有的资源。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14