
执法部门是如何运用大数据的?
随着大数据的发展,大数据以应用的很多领域,执法部门是如何运用大数据的?
日益增长的安全威胁,以及预算缩减给全球范围的执法机构施加了巨大压力,使得他们不得不提高他们利用有限资源的效率。所以那么多机构都开始使用大数据,因为大数据可以帮助他们解决各自社区紧急问题。
在进行研究大数据分析的强大之前,了解清楚大数据的有关信息至关重要。
什么是大数据?
简单来说,就是不同资源数据的采集分析,旨在不同的数据集中识别出有意义的模式。换句话说,采集分析来自传感器、手机数据、社交媒体和互联网这些不同角度的数据可以进一步了解一个人或者搞清一个问题。关键是要核对不同的数据格式并找出你需要的,其中包括结构化数据和非结构化数据。
既然你已经有了一个基本的了解,现在就一起来探讨一些用来提高执法机构工作效率的大数据应用程序吧。
执法分析
执法分析(LEA)是一组基于大数据原则的系统,并给执法机构工作人员提供可操作信息。这些系统联合所有的现有信息,把看似无关的数据建立起关系并通过仪表盘和屏幕用简单的格式呈现出来,这样就方便了执法部门人员行事。最重要的是,执法人员不用再靠复杂的系统来获取需要的信息,这既节约了时间也提高了效率。
预测分析
执法部门人员如何在不增加成本的情况下,有效减少犯罪?
通过劝说大家不要破坏法律?还是给罪犯更严厉的处罚?亦或是采购更猛的武器炸弹?
必然不是!
而是提前预测出犯罪。
这正是基于大数据的预测分析系统。该系统联合了来自各种资源的数据,并用复杂的算法来预测下次犯罪的种类和犯罪地点。这些信息有利于执法人员及时到达犯罪现场并有效阻止犯罪的发生。这种系统节省了时间及其他成本,执法机构也因此可以避免进行无效的追逐,同时预防犯罪。
洛杉矶警察局用PredPol软件就是个很好的例子。该软件使用了地点、时间和犯罪性质这三个数据点来预测犯罪的发生时间和地点。这个软件的确起到了作用,从2013年1月到2014年1月,洛杉矶警察局的山麓部门就发现犯罪率下降了20%,更意外的是,2014年2月13日破天荒成了零犯罪日。
实施条例
警察花费许多时间来检查药物利用指数、安全带和车速以减少交通事故的发生。尽管有这些努力,交通意外的发生数量依旧在上升,因为现有的工作人数不足以巡逻所有的高速违规。
这也是为什么许多执法部门比如田纳西州公路巡逻队开始使用大数据系统的原因。
由IBM公司发明的交通事故系统通过识别药物利用指数和地点、时间、天气情况以及其他相关因素来预测将发生的事件。基于这个系统,田纳西州公路巡逻队只需要集中于意外高发的地段和时间,即可减少交通事故,同时得益于这个系统,该州2014这一年成为1963年以来发生交通事故率最少的一年。
情报共享
传统上来说,数据被孤立在不同的部门,任何部门需要信息都必须要通过复杂的程序才能得到。这样低效率的分享也影响了各部门的办事效率。可喜的是,大数据已经改变了这种不合理的方式,如今大数据存在于不同的部门中,汇集分析起来也非常方便。因此,情报工作可以做的更精确,并且通过鼠标点击就可以在不同的执法机构之间共享。
总的来说,以上的应用程序暂且还不能替代执法机构人员来工作,但它们却是能够有效打击犯罪的强大工具,同时也能帮助各部门充分利用起手头现有的资源。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30