
当“大数据”铺天盖地般向我们涌来,人们往往期冀能够对大数据能够有更进一步的了解,“数据挖掘”因此成为我们理解大数据概念绕不过去的“坎”。通过将大数据与数据挖掘进行对比分析,将有助于人们了解大数据的来龙去脉和未来真实走向。
1.基本概念
数据挖掘,顾名思义就是从大量的数据中挖掘出有用的信息,即从大量的、不完全的、有噪声的、随机的、模糊的数据中,提取隐含其中的、规律性的、人们事先未知的、但又是潜在的有用信息和知识的过程。数据挖掘是一个在海量数据中利用各种分析工具发现模型与数据间关系的过程,它可以帮助决策者寻找数据间潜在的某种关联,发现被隐藏的、被忽略的因素,因而被认为是在这个数据爆炸时代解决信息贫乏问题的一种有效方法。数据挖掘作为一门交叉学科,融合了数据库、人工智能、统计学、机器学习等多领域的理论与技术。数据库、人工智能与数理统计为数据挖掘的研究提供了三大技术支持。
大数据是通过高速捕捉、发现和分析,从大容量数据中获取价值的一种新的技术架构。著名研究机构IDC给大数据的定义,有四个"V"字开头的特征:Volume(体量大),Velocity(速度快),Variety(种类杂),Value(价值大)。Volume是指大数据巨大的数据量与数据完整性�Velocity可以理解为更快地满足实时性需求;Variety则意味着要在海量、种类繁多的数据间发现其内在关联;Value最重要,它是大数据的最终意义:挖掘数据存在的价值。
2.相互联系
大数据是数据挖掘的概念再升级。相比于兴起只有2~3年的大数据概念,已有20多年发展的数据挖掘可称得上大数据的开山鼻祖。因为大数据和数据挖掘的本质是相同的――对数据进行挖掘分析,以发现有价值的信息。而且大数据的兴起,正是在人工智能、机器学习和数据挖掘等技术基础之上发展起来的,而人工智能、机器学习又是在为数据挖掘服务。从表面上看,大数据与数据挖掘的显著区别在于“大”上。然而深入分析就会发现:一方面,数据挖掘的对象不仅可以用于少量的数据,而且同样适用于海量数据,只是由于挖掘方法和技术工具的不断升级换代,换了个新的名称而已;另一方面,大数据的本质不在于“大”,而是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此创造新产品和服务,或是预测未来趋势。所以大数据和数据挖掘的概念在一定时期还会并存,因应于使用的时机、场合或使用人的习惯,真正的关键点是如何体现出数据的价值。
大数据是数据挖掘产业化的表现。长久以来,数据挖掘的经典案例――“啤酒与尿布”被广为传颂,然而这一传奇故事显然跟不上时代大发展的步伐,取而代之的是谷歌成功预测流感的案例。数据的价值在于信息,而技术的价值在于利润,数据挖掘可以看作是专业技术领域的专业名词,到了商业领域就需要进一步的包装与升级。只有这样,一系列的开放式平台、技术解决方案才能迅速“火”起来。显而易见,这种商业的运作模式已经非常成熟和成功。目前,大数据已被视为创新和生产力提升的下一个前沿,正成为国家竞争力的要素之一,在世界范围内日益受到重视,多国政府加大了对大数据发展的扶持力度,甚至上升到国家战略的高度。某咨询公司研究显示,全球对大数据项目投资总额2012年已达45亿欧元(约60亿美元),2013、2014两年均会保持约40%的增长速度。
3.简要小结
当前,数据挖掘在专业领域的地位已经非常牢固,但大数据还受到民众和业界的诸多质疑,认为是一种商业噱头和忽悠。其实很多争论实质上并非在讨论同一问题。比如,有人举例说,《大数据时代》的作者维克托・迈尔―舍恩伯格认为 , “人们处理的数据从样本数据变成全部数据”的结论至少从目前的数据收集和分析能力来说是不可能实现的。我们应该看到,没有不变的真理,只有客观规律。任何技术都不是万能的,作为一种技术而言,它仅代表了一种发展方向,它因为能够解决某一现实问题而具备存在的价值;至于技术的商业化运用成不成功,则还受制于运用推广的方式等其它诸多因素。例如,对比上世纪末“互联网经济泡沫”破灭时的哀鸿遍野和前不久阿里巴巴在美国上市的一片赞歌,可以看出:互联网技术的发展势不可挡,互联网产业发展一波三折,只能说产业和技术紧密相联,但终究不是一回事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30