京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当“大数据”铺天盖地般向我们涌来,人们往往期冀能够对大数据能够有更进一步的了解,“数据挖掘”因此成为我们理解大数据概念绕不过去的“坎”。通过将大数据与数据挖掘进行对比分析,将有助于人们了解大数据的来龙去脉和未来真实走向。
1.基本概念
数据挖掘,顾名思义就是从大量的数据中挖掘出有用的信息,即从大量的、不完全的、有噪声的、随机的、模糊的数据中,提取隐含其中的、规律性的、人们事先未知的、但又是潜在的有用信息和知识的过程。数据挖掘是一个在海量数据中利用各种分析工具发现模型与数据间关系的过程,它可以帮助决策者寻找数据间潜在的某种关联,发现被隐藏的、被忽略的因素,因而被认为是在这个数据爆炸时代解决信息贫乏问题的一种有效方法。数据挖掘作为一门交叉学科,融合了数据库、人工智能、统计学、机器学习等多领域的理论与技术。数据库、人工智能与数理统计为数据挖掘的研究提供了三大技术支持。
大数据是通过高速捕捉、发现和分析,从大容量数据中获取价值的一种新的技术架构。著名研究机构IDC给大数据的定义,有四个"V"字开头的特征:Volume(体量大),Velocity(速度快),Variety(种类杂),Value(价值大)。Volume是指大数据巨大的数据量与数据完整性�Velocity可以理解为更快地满足实时性需求;Variety则意味着要在海量、种类繁多的数据间发现其内在关联;Value最重要,它是大数据的最终意义:挖掘数据存在的价值。
2.相互联系
大数据是数据挖掘的概念再升级。相比于兴起只有2~3年的大数据概念,已有20多年发展的数据挖掘可称得上大数据的开山鼻祖。因为大数据和数据挖掘的本质是相同的――对数据进行挖掘分析,以发现有价值的信息。而且大数据的兴起,正是在人工智能、机器学习和数据挖掘等技术基础之上发展起来的,而人工智能、机器学习又是在为数据挖掘服务。从表面上看,大数据与数据挖掘的显著区别在于“大”上。然而深入分析就会发现:一方面,数据挖掘的对象不仅可以用于少量的数据,而且同样适用于海量数据,只是由于挖掘方法和技术工具的不断升级换代,换了个新的名称而已;另一方面,大数据的本质不在于“大”,而是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此创造新产品和服务,或是预测未来趋势。所以大数据和数据挖掘的概念在一定时期还会并存,因应于使用的时机、场合或使用人的习惯,真正的关键点是如何体现出数据的价值。
大数据是数据挖掘产业化的表现。长久以来,数据挖掘的经典案例――“啤酒与尿布”被广为传颂,然而这一传奇故事显然跟不上时代大发展的步伐,取而代之的是谷歌成功预测流感的案例。数据的价值在于信息,而技术的价值在于利润,数据挖掘可以看作是专业技术领域的专业名词,到了商业领域就需要进一步的包装与升级。只有这样,一系列的开放式平台、技术解决方案才能迅速“火”起来。显而易见,这种商业的运作模式已经非常成熟和成功。目前,大数据已被视为创新和生产力提升的下一个前沿,正成为国家竞争力的要素之一,在世界范围内日益受到重视,多国政府加大了对大数据发展的扶持力度,甚至上升到国家战略的高度。某咨询公司研究显示,全球对大数据项目投资总额2012年已达45亿欧元(约60亿美元),2013、2014两年均会保持约40%的增长速度。
3.简要小结
当前,数据挖掘在专业领域的地位已经非常牢固,但大数据还受到民众和业界的诸多质疑,认为是一种商业噱头和忽悠。其实很多争论实质上并非在讨论同一问题。比如,有人举例说,《大数据时代》的作者维克托・迈尔―舍恩伯格认为 , “人们处理的数据从样本数据变成全部数据”的结论至少从目前的数据收集和分析能力来说是不可能实现的。我们应该看到,没有不变的真理,只有客观规律。任何技术都不是万能的,作为一种技术而言,它仅代表了一种发展方向,它因为能够解决某一现实问题而具备存在的价值;至于技术的商业化运用成不成功,则还受制于运用推广的方式等其它诸多因素。例如,对比上世纪末“互联网经济泡沫”破灭时的哀鸿遍野和前不久阿里巴巴在美国上市的一片赞歌,可以看出:互联网技术的发展势不可挡,互联网产业发展一波三折,只能说产业和技术紧密相联,但终究不是一回事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29