
想要成为数据分析师需要从零开始,首先从基本开始学习,也是一些工作了很长时间的数据从业者要关注的问题。现以网站分析师的成长为例进行说明,其他职位类似。
1.基本认知阶段
基本认知阶段通常是刚入行的数据分析师所处的阶段。基本认知阶段要做的是尽快熟悉所要从事工作的基本环境、工具、流程、制度和常识,具体包括数据工具的基本认知和使用技巧、数据概念和基本常识、数据与业务对接和沟通流程、基本业务运转常识等。对于网站数据分析师的具体要求如下:
了解基本的网站分析和数据工具,网站分析工具如Google Analytics、百度统计、Adobe Analytics、Webtrekk等;数据分析工具如Excel、SPSS、Clementine、SAS、R等,了解不同工具有哪些功能及差异点。
了解网站分析及数据分析的基本概念、定义和规则,比如需要清楚UV、PV、Visit、IP的区别以及数据差异的影响因素。
了解互联网工作的基本机制,掌握基本的HTML语言、编程语言规则和JavaScript规则,如果还能了解一些Cookie、缓存机制、HTTP信息会更有利于后期的发展。
了解所服务的业务对象,如营销业务、网站运营业务、会员相关业务等,理顺各种业务的具体含义、范畴、流程等,并且能把数据与业务工作关联起来。
关于如何学习或获得相关的知识,有以下几种方法可以参考:
定位行业或企业内的大师,并通过其博客、文章、专著、书籍等快速入门。
拓展相关视野,通过与行业大师相关联的人脉关系掌握更多的学习资源,如友情链接、好友推荐、朋友圈、知识联盟等。
书籍是系统性学习的重要途径,但不是唯一途径,很多工具的帮助中心不仅免费,而且介绍了非常多关于工具技能和应用场景的相关知识,是不可多得的优秀学习资源。
行业内的知识门户可以作为学习时的重要参考点,其中不乏精彩案例、知识解析、深入挖掘,以及行业知识推荐等优秀板块。
2.个人实践阶段
在经过基本认知阶段之后需要将掌握的基本理论、知识、经验付诸于个人实践。
第一步是搭建实践所需的网站环境。如果情况允许,建议购买属于自己的域名和服务器空间,利用开源系统搭建一套属于自己的网站,简单而又无须过多地投入资金;如果确实没有条件,至少需要在在自己的计算机上搭建一套测试环境。
第二步是部署网站跟踪代码。将标准代码、定制代码、特殊作用的代码统统实践一遍,免费的网站分析工具都可以作为实践对象,以便系统地了解和比较不同的系统部署、实施及报告效果的差异性,从而加深对工具、原理、概念的理解。
第三步是进行网站分析。完成系统部署后,所有的报表及其中的记录数、字段值、功能点至少要全部使用一遍,遇到问题后首先通过帮助中心自己寻找答案,其次才是寻求别人的帮助。
第四步是实践总结与提高。实践总结是个人提高的重要步骤,通过总结能发现历史问题中的规律,并能把问题及解决方案融会贯通进而得到系统性的提升。
3.企业实践阶段
企业实践是第三阶段。建议新手不要一开始就拿企业的工作环境进行实践,原因是在没有具备一定能力和经验的条件下,实践可能会对企业的数据安全、数据质量造成灾难性的后果,尤其是采用SAAS模式的网站分析工具的数据是不可逆的,数据一旦丢失将无法找回。
在企业实践阶段,企业会有大量的业务类需求可供实践,同时在更高流量的支持下,个人的实践经验会得到极大丰富。在数据量小、业务场景简单的情况下,网站分析师面临的问题少,个人提升有限;但当面临海量数据、实时要求、复杂流程时,个人能力和经验会快速积累。比如,以下场景是只有在大数据量的情况下才会出现的:
在用户登录谷歌账户后,通过Adwords推广的关键字将被设为not set;
在唯一数据记录数达到一定阀值后,更多的流量会被合并为“低流量”;
当每天请求量达到1000万时,很多工具数据延迟问题非常严重,甚至会无法处理数据;
当数据量超过某个限制,某些工具会存在抽样,相同的维度在不同的报表下数据不一致。
对于企业中存在的种种问题,我相信“问题=机会”。
4.行业实践阶段
当个人的能力已经完全可以自如地应对企业实践中的种种需求时,下一步需要把视野拓展到行业领域,具体包括两方面的内容:一是数据视野,二是商业视野。
数据视野。网站分析只是整个数据分析体系的一个分支,数据分析仅是整个数据工作体系的一个环节。更高层次的数据视野意味着数据分析师不仅仅局限于分析工作,还要熟悉整个数据工作系统的各个环节。
商业视野。除BAT这种超级公司外,通常每个企业都有自己的聚焦领域,这意味着该企业的状态最多只能代表该行业的经验。所谓隔行如隔山,不同行业中的数据需求、工作流程、工作机制、工作内容大不相同,因此很难将经验完整地复制到其他行业。对于行业的突破可能有以下三种选择:
进入超级公司如BAT,几乎在每个互联网行业都有投资;
换公司是最直接的方法,但通常成本过高风险较大;
进入乙方服务公司,直接服务于不同的行业客户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29