
在工作中,很多刚接触不久的数据分析师都会遇到这样的问题,数据分析报告中我们该选择什么样的统计图表呢?其实,对于于不同的数据分析工具收集到的数据千差万别,基于这些数据生成展示的统计图表也不尽相同;而且数据分析师制作各种报告时,也常常纠结于如何选择合适的图表表达数据诉求,因此我们有必要去理解一些常用数据分析统计图表的特点、使用方法以及注意点。数据分析中主要使用以下几种图表。
折线图:按照时间序列分析数据的变化趋势时使用
柱 图:指定一个分析轴进行数据大小的比较时使用
饼 图:指定一个分析轴进行所占比例的比较时使用
仪表图:单独关注一个指标的绩效表现时使用
1.折线图
折线图主要是在按照时间序列分析指标值变化趋势的情况下使用。通常情况下X轴设定为时间,Y轴设定为其他指标值。分析页面浏览数,访问者数,转化数(率)等指标整体变化趋势时多用折线图。这些指标值用折线图表示之后,可以明确每小时段、天、周、月或年的变化趋势,得到类似“平时工作日的访问比较多,周末的访问比较少”,“这个月转化数较上个月下降了近10%”等分析结论。
那么接下来就让我们去见识一下网站分析所使用的几组折线图(X轴都设定为时间)。
首先,Y轴设定为页面浏览数的折线图。表示成折线图之后页面浏览数的增减就一目了然了。
(※折线图 ↓)
下图表示了同时涵盖“初次访问”和“再访问”的页面浏览数。在相同单位下这些指标值都可以统合在一个图表中显示。
(※细分折线图 ↓)
这样一来就可以细化分析一些趋势变化的原因。在上图中,可以发现:8月16日的流量短暂峰值主要来自于初访者。
接下来看下图。是【今年8月】和【去年8月】每一天的页面浏览数同比数据。可以看出今年不仅总体流量有所提升,而且有效缓解了每逢周末流量减少的现象。
(※对比折线图 ↓)
做折线图时的注意事项
在做成折线图时请注意以下几点。
1. 图表中的指标要明示(即Y轴数值代表的指标)。
2. 当X轴有多于5个项目时推荐使用折线图,当不足5个项目时可以使用柱图。
3. 在一组折线图中如果折线超过了4条,由于折线之间有重复的部分所以会看不清楚。这种情况下,可以拆分成两组折线图去表现。
2.柱图
柱图主要是以特定的轴线来比较指标值的大小的情况下使用。柱图是网站分析中最常使用的一种图表。柱图可分为竖柱图、横柱图和累积竖柱图等。下面说明一下这几种柱图的特点。
首先是【横柱图】。横柱图也叫条形图,一般用来表示一类项目的横向对比,例如按访问量对网页的排名、按转化率大小对广告媒体的排名等。横柱图的X轴通常代表确定数值大小的刻度尺。下图是按访问量大小对网站页面的排名图:
(※横柱图 ↓)
其次是【竖柱图】。竖柱图和折线图用法类似,常用来表示时间序列的指标数值变化情况。不同的是,如果X轴上的时间点不多(例如低于5个)可以选择使用竖柱图;或者根据数据的性质和图表想要表达的侧重点来选择:竖柱图偏向于表现数量,而折线图偏向于表现趋势。
讲到这里还可以看出【竖柱图】表现的是数据随时间变化的关系,而【横柱图】所表示的项目对比指在某一时间点或时间段内的数据。也许有人会问“横柱图的数据不一样可以通过竖柱图表现出来吗?”,理论上可以,但通常横柱图中的项目名称(例如上例中的网页标题)都偏长,如果通过竖柱图表现很难在一行内展现,可能会出现折行的现象。
下图就是表现访问次数随时间变化的竖柱图。
(※竖柱图 ↓)
柱图中还有一种叫做【累积竖柱图】。当我们想确认某一个数值的详细内容时使用累积竖柱图就很方便了。下图是对访问次数按网站的访问来源(广告进入、直接访问进入、搜索引擎进入)细分做成图表,这样可以很容易的判断网站进入方式的详细情况。
(※累积竖柱图 ↓)
做成柱图的注意事项
在做成柱图的时候请注意以下几点。
1. 注意竖柱图和横柱图的区分使用
2. 柱的数量过多导致柱间空隙很小时,可以选择使用折线图
3. 【数量】和【比例】最好做成不同的柱图
3. 饼图
饼图主要是在分析整体指标值中的成分比例时使用的。特点就是能够一眼分辨出哪一个项目所占的比例最大。下图中很容易的就能发现网站的进入页主要是“数码林的博客”页,比例将近达到了40%。
(※饼图 ↓)
做成饼图时的注意事项
在做成饼图时请注意以下几点。
1. 由于饼图是为了确认比例而不是数量,所以饼图上表示的是比例,如果想要表现总数值的话,可以添加一行n=XXXX这样的描述。
2. 饼图中的构成元素是按照百分比降序排列的(【其他】除外)
3. 由于人们习惯顺时针看东西,所以最好把最重要的内容放在12点位置附近
4. 当饼图中的构成元素有10种以上时,排在后面的数据总结在一起用【其他】来表示。
4.仪表图
仪表图是为了关注单独一个指标的表现时使用。特点是能给出指标的安全范围和警戒范围。
例如将跳出率的表现以25%、50%为界限分为三个绩效区域,并分别以绿色、黄色和红色来区分三个绩效区域,其中红色表示警戒区域。从下图可以一眼看出9月的跳出率已经超过50%进入警戒区域,需要引起重视了。
(※仪表图 ↓)
做成仪表图时的注意事项
在做成仪表图时请注意以下几点。
1. 注意绩效表现区域的划分,一般利用两个边缘值分为三个区域
2. 红色警戒区域出现在左侧还是右侧和指标的业务属性相关,例如跳出率越高越接近警戒区域,所以红色区域在右侧。cda数据分析师培训
最后援引麦肯锡的《用图表说话》中一段话来总结一下关于图表的选择:
(1)图表是语言的一种形式,它的存在是为了比表格更快更好的表达你想要表达的内容
(2)决定图表的不是数据也不是尺寸,而是你想说明的主题
(3)图表贵精不贵多,只有当图表能帮你表达主题时才使用
(4)图表是直观教具,但它不能取代书写和讲述,在帮你传达主题时,它能起到重要作用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29