京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS Says 扩展篇IML:函数玩一玩
1. 元素函数
元素函数是针对矩阵里的元素进行操作的,比如:
|
abs( ) |
取绝对值 |
|
exp( ) |
e的元素次方 |
|
int( ) |
取整 |
|
log( ) |
取ln |
|
mod( ) |
取余 |
|
sqrt( ) |
将元素开方 |
举个栗子:
例子
proc iml;
a={9 -2.38, -1 0, 2 1};
c1=abs(a);
c2=exp(a);
c3=int(a);
c4=mod(a);
print a,c1,c2,c3,c4;
quit;
2. 矩阵函数
矩阵函数将对整个矩阵进行操作:
矩阵查询函数可以查询矩阵的一些基本信息,如行数、列数、行最大值、列最大值等等;
矩阵生成函数可以对矩阵进行分块、取对角线等,生成一个新的矩阵。
(1)矩阵查询函数
all (条件):当矩阵所有元素都满足条件时,返回1,否则返回0;
any (条件):只要矩阵中有一个元素满足条件,就返回1,否则返回0。
例子
proc iml;
a={9 -2.38, -1 0, 2 1};
c1=all(a>0);
c2=any(a>0);
print a,c1,c2;
quit;
loc(条件):返回满足条件的元素的标号,还可以与截取运算符[]搭配使用,获取标对应的数值。
例子
proc iml;
a={9 -1 3, 3 -3 0};
c1=loc(a>0);
c2=a[ loc(a>0) ];
print a,c1,c2;
quit;
nrow(矩阵):求矩阵行数;
ncol(矩阵):求矩阵列数;
type(矩阵):得到矩阵的类型,数值型返回N、字符型返回C,如果矩阵不含任何值,返回U。
length(矩阵):求矩阵每个元素的长度,只能是字符矩阵。
例子
proc iml;
a={9 -1 3, 3 -3 0};
b={"hello","world"};
c1=nrow(a);
c2=ncol(a);
c3=type(a);
c4=length(b);
print a,c1,c2,c3,c4;
quit;
(2)矩阵生成函数
通过这类函数得到一些简单、特殊的矩阵。
block(M1,M2...):创建分块对角阵;
diag(M):只保留矩阵M的对角线,其余元素均赋值为0;
vecdiag(M):将矩阵M的对角线元素变成列向量。
娘子,快来看大楼~!————→
例子
proc iml;
a={9 -1 , 3 -3};
b={1 2, 4 5};
c=block(a,b);
c1=diag(c);
c2=vecdiag(c);
print a,c1,c2;
quit;
i(n):创建n×n的单位阵;
j(row,col,value):创建row×col的矩阵,矩阵的数据均为value;
repeat(value,row,col):和上面的一样,生成row×col、元素均为value的矩阵;
insert(M1,M2,插入第n行,或插入第m列):将矩阵M2插入矩阵M1中,插入第n行,或者第m列,注意m和n必须有一个为0,因为这两个只能指定一个。
右边的朋友,我要是能和你一样高就好了。
例子
proc iml;
a=i(3);
b=j(2,4,7);
c=repeat(7,2,4);
d=insert(a,{1 -1 0},2,0);
print a,b,c,d;
quit;
uniform(seed):生成(0,1)均匀分布的伪随机数;
normal(seed):生成均值为0,方差为1的伪随机数;
例子
proc iml;
a=normal(1);
b=normal({1 1 1,1 1 1, 1 1 1});
c=normal(repeat(1,3,3));
d=uniform({2 2 2});
print a,b,c,d
quit;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05